HDU-2111 Saving HDU

本文介绍了一个经典的背包问题求解算法,通过优先级排序的方式尽可能多地填充高价值物品,实现利益最大化。该算法适用于物品可分割的情况,并通过示例代码详细展示了实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#include <iostream>
#include <cstdio>
#include <algorithm>

using namespace std;

const int maxn = 100 + 5;
int v, n;
int value;
struct TREASURE
{
    int pi;
    int mi;
    bool operator < (const TREASURE Next) const
    {
        if(pi == Next.pi) return mi < Next.mi;
        else return pi > Next.pi;
    }
} treasure[maxn];

int main()
{
    while(~scanf("%d", & v))
    {
        if(!v)
            break;
        scanf("%d", & n);
        value = 0;
        for(int i = 0; i < n; i ++)
            scanf("%d %d", & treasure[i].pi, & treasure[i].mi);
        sort(treasure, treasure + n);
        for(int i = 0; i < n; i ++)
        {
            if(treasure[i].mi >= v)
            {
                value += v * treasure[i].pi;
                break;
            }
            else
            {
                value += treasure[i].pi * treasure[i].mi;
                v -= treasure[i].mi;
            }
        }
        printf("%d\n", value);
    }
    return 0;
}
题意:宝贝的种类不少,但是每种宝贝的量并不多,当然,每种宝贝单位体积的价格也不一样,为了挽救HDU,现在请你帮忙尽快计算出来XHD最多能带回多少价值的宝贝?(假设宝贝可以分割,分割后的价值和对应的体积成正比)输入包含多个测试实例,每个实例的第一行是两个整数v和n(v,n<100),分别表示口袋的容量和宝贝的种类,接着的n行每行包含2个整数pi和mi(0<pi,mi<10),分别表示某种宝贝的单价和对应的体积,v为0的时候结束输入。对于每个测试实例,请输出XHD最多能取回多少价值的宝贝,每个实例的输出占一行。
题解:按着价格从大到小排序。之后把价值大的尽量装进口袋。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值