测试用例设计 之 正交法

正交法在测试用例设计中的应用
本文介绍了正交拉丁方的概念及其在正交试验设计中的作用,阐述了正交试验设计的基本思想和方法,包括如何选择因素、水平、正交表,并通过实例展示了如何使用正交法减少测试用例数量,提高测试效率。

1、什么是n阶拉丁方?

用n个不同的拉丁字母排成一个n阶方阵(n<26),如果每行的n个字母均不相同,每列的n个字母均不相同,即每个字母在任一行、任一列中只出现一次,则称这种方阵为n*n拉丁方或n阶拉丁方。

如:3阶拉丁方

图片

2、什么是正交拉丁方?

设有两个n阶的拉丁方,如果将它们叠合在一起,恰好出现n^2个不同的有序数对,则称为这两个拉丁方为互相正交的拉丁方,简称正交拉丁方

用数字替代拉丁字母

图片

3、正交试验设计的基本概念

在一项试验中,把影响试验结果的量称为试验因素(因子),简称因素。因素可以理解为试验过程中的自变量,试验结果可以看成因素的函数。在试验过程中,每一个因素可以处于不同的状态或状况,把因素所处的状态或状况,称为因素的水平,简称水平。

将正交试验选择的水平组合,列成表格,称为正交表。

正交表具有以下两个特点,即正交性。正交表必须满足这两个特点,有一条不满足,就不是正交表。

每列中不同数字出现的次数相等。这一特点表明每个因素的每个水平与其它因素的每个水平参与试验的几率是完全相同的,从而保证了在各个水平中最大限度地排除了其它因素水平的干扰,能有效地比较试验结果并找出最优的试验条件。

在任意2列其横向组成的数字对中,每种数字对出现的次数相等。这个特点保证了试验点均匀地分散在因素与水平的完全组合之中,因此具有很强的代表性

正交试验设计(Orthogonal experimentaldesign)是研究多因素多水平的一种设计方法,它是根据正交

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值