模型搭建与参数优化
本文主要是复习pytorch实战计算机视觉的内容,模型采用CNN,数据集是手写体
1.模型搭建
class Model(torch.nn.Module):
def __init__(self):
super(Model,self).__init__()
self.conv1 = torch.nn.Sequential(
torch.nn.Conv2d(1,64,kernel_size=3,stride=1,padding=1),
torch.nn.ReLU(),
torch.nn.Conv2d(64,128,kernel_size=3,stride=1,padding=1),
torch.nn.ReLU(),
torch.nn.MaxPool2d(stride=2,kernel_size=2)
)
self.fc = torch.nn.Sequential(
torch.nn.Linear(14*14*128,1024),
torch.nn.ReLU(),
torch.nn.Dropout(p=0.5),
torch.nn.Linear(1024,10)
)
def forward(self,x):
x = self.conv1(x) #卷积处理
x = x.view(-1,14*14*128) # 传入全连接层是必须扁平化处理否则会报错
x = self.fc(x)
return x
2.模型训练和参数优化
cost = torch.nn.CrossEntropyLoss()#损失函数采用交叉熵
optimizer = torch.optim.Adam(model.parameters())#参数优化采用Adam优化的是model中所有参数
if Use_gpu:
model = model.cuda()
n_epochs = 5
for epoch in range(n_epochs):
running_loss = 0.0
runing_correct = 0.0
print("Epoch{}/{}".format(epoch,n_epochs))
for data in data_loader_train:
X_train,y_train = data
if Use_gpu:
X_train,y_train = Variable(X_train.cuda()),Variable(y_train.cuda())
else:
X_train,y_train = Variable(X_train),Variable(y_train)
outputs = model(X_train)
_,pred = torch.max(outputs.data,1)
optimizer.zero_grad() #梯度清零
loss = cost(outputs,y_train) #计算损失值
loss.backward() #反向传播
optimizer.step()
running_loss+=loss.data
runing_correct += torch.sum(pred==y_train.data)
testing_correct=0
for data in data_loader_test:
X_test,y_test = data
if Use_gpu:
X_test,y_test = Variable(X_test.cuda()),Variable(y_test.cuda())
else:
X_test,y_test = Variable(X_test),Variable(y_test)
outputs = model(X_test)
_,pred = torch.max(outputs.data,1)
testing_correct += torch.sum(pred==y_test.data)
print("Loss is:{:.4f},Train acc:{:.4f},Test acc:{:.4f}"
.format(running_loss/len(data_train),
100*runing_correct/len(data_train),
100*testing_correct/len(data_test)))
输出:
Epoch0/5
Loss is:0.0007,Train acc:98.0000,Test acc:98.0000
Epoch1/5
Loss is:0.0005,Train acc:99.0000,Test acc:98.0000
Epoch2/5
Loss is:0.0003,Train acc:99.0000,Test acc:98.0000
Epoch3/5
Loss is:0.0003,Train acc:99.0000,Test acc:98.0000
Epoch4/5
Loss is:0.0002,Train acc:99.0000,Test acc:98.0000
3.对测试数据可视化
data_loader_test = torch.utils.data.DatalLoader(dataset=data_test,batch_size=4,shuffle=True)
X_test,y_test = next(iter(data_loader_test))
if Use_gpu:
X_test = Variable(X_test.cuda())
else:
X_test = Variable(X_test)
pred = model(X_test)
_,pred = torch.max(pred,1)
print("predict Label is:",[i for i in pred.data])
print("Real Label is:",[i for i in y_test])
img = torchvision.utils.make_grid(X_test)
img = img.cpu.numpy().transpose(1,2,0) #cuda数据类型不能直接转numpy需要先变成cpu
std = [0.5,0.5,0.5]
mean = [0.5,0.5,0.5]
img = img*std + mean
plt.imshow(img)
致谢
深度学习之pytorch实战计算机视觉