[洛谷P3395]路障题解

原题
bfs,边读入边处理,检查能不能达到终点

#include<iostream>
#include<cstring>
#define LEN 5005
using namespace std;
int n,t,x,y;
int board[LEN][LEN]={
  
  0};
int main()
{   
      cin>>t;//次数
      while(t)
      { 
        t--;
        memset(board,0,sizeof(board));//每
洛谷 P8865 种花 是一道与动态规划相关的题目,其核心思想与“摆花”问题类似,但又有所扩展,涉及了组合数学与多重背包问题的结合。 ### 解题思路 题目可以理解为:有 $ n $ 种花,每种花有 $ a[i] $ 盆,要求从中选出 $ m $ 盆花排成一排。同一种花必须连续摆放,并且种类按照编号递增排列。求满足条件的排列方式总数。 这个问题可以通过动态规划来解决。定义状态 $ dp[i][j] $ 表示前 $ i $ 种花中选 $ j $ 盆花的方案数。 状态转移方程为: $$ dp[i][j] = \sum_{k=0}^{\min(a[i], j)} dp[i-1][j-k] $$ 其中 $ k $ 表示第 $ i $ 种花选取了 $ k $ 盆,$ a[i] $ 表示第 $ i $ 种花的最大数量。 初始状态为 $ dp[0][0] = 1 $,表示不选任何花时只有一种方案。 为了优化时间复杂度,可以使用滚动数组来减少空间开销。同时,由于每次状态转移需要累加多个前一状态的值,可以利用前缀和优化来减少重复计算。 ### 代码实现 ```cpp #include <bits/stdc++.h> using namespace std; const int N = 210, mod = 1000007; int n, m; int a[N]; int dp[N][N]; int main() { cin >> n >> m; for (int i = 1; i <= n; i++) cin >> a[i]; // 初始化,前0种花选0盆的方案数为1 dp[0][0] = 1; for (int i = 1; i <= n; i++) { for (int j = 0; j <= m; j++) { // 枚举第i种花选取的数量 for (int k = 0; k <= min(a[i], j); k++) { dp[i][j] = (dp[i][j] + dp[i-1][j - k]) % mod; } } } cout << dp[n][m] << endl; return 0; } ``` 上述代码中,外层循环遍历每种花,内层循环遍历可选的花盆数,最内层循环则枚举当前花选取的数量。通过三重循环完成状态转移。 为了优化性能,可以进一步优化最内层的循环,通过前缀和预处理 $ dp[i-1][j-k] $ 的累加值,避免重复计算。 ### 优化思路 - **空间优化**:使用滚动数组,将二维数组优化为一维数组,因为每次状态转移只依赖上一层的结果。 - **时间优化**:使用前缀和优化,避免每次都要循环累加上一层的状态值。 ###
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值