整数的所有分割数目

转载于:http://www.cnblogs.com/NeilHappy/archive/2013/02/15/2912685.html

问题描述:把一个正整数写成若干个正整数的和。比如4=3+1,2+2,2+1+1,1+1+1+1,再加上自己,就一共有5种分割方式。

     思路:求解4的所有分割方式,实际上就是求分割中以4为最大值而且和为4的所有分割方式,可以用p[4][4]来表示。抽象出来,就是p[n][m],表示分割中以m为最大值而且和为n的所有分割方式。那么,就有以下几种情况。

     1.第一步当然是n==m,所以第一个分割肯定是n本身了。最大值为n的分割肯定只有一个,所以接下来,就要求p[n][m-1]了。归纳出来:p[n][m]=p[n][m-1]+1;

     2.从第一步m-1后,n肯定是大于m了。所以,p[n][m]的分割中,要么不含m,比如p[4][2],4可以分割成1+1+1+1,这就不含2。这样的话最大值就是1,也就是m-1,所以这种情况归纳出来就是p[n][m-1];要么 含一个或以上m,比如2+2,这样的话p[n][m]=p[n-m][m],或者p[n-2m][m]......因为剔除掉若干个m,数目是一样的。

     3.通过以上分析,可以很明显的看出这个程序可以用递归写出来。写递归,关键的一点就是递归结束的条件。在这里比较简单,就是p[n][1]=1,p[1][m]=1了。还要注意,n<m没什么意义,所以这里把n<m时的p[n][m]直接定义成p[n][n];

     归纳一下,递归的详细步骤如下:

     1.n==1 || m==1    p[n][m]=1

     2.n==m                p[n][n]=p[n][m-1]+1

     3.n>m                  p[n][m]=p[n][m-1]+p[n-m][m]

     4.n<m                  p[n][m]=p[n][n]

     代码如下:

 

#include <stdio.h>
#include <stdlib.h>

#define MAX 1000
int p[MAX][MAX] = {0};

int process(int n, int m)
{
	if(m == 1 || n == 1)
		return p[n][m] = 1;
	else if(m == n)
		return p[n][m] = 1 + process(n, m - 1);
	else if(n > m)
		return p[n][m] = process(n, m - 1) + process(n - m, m);
	else if(n < m)
		return p[n][m] = process(n, n);
}

int main()
{
	int n = 10;
	int result = process(n, n);
	result = p[n][n];
	printf("%d \n", result);
	int a[5] = {1, 2, 3, 4, 5};
	int *ptr = (int*)(&a + 1);
	int *ptr1 = (int*)(&a[0] + 1);
	printf("%d %d \n", *(ptr - 1), *(ptr1 - 1));
	system("pause");
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值