ACM: 网络流 图论 poj 1459

本文深入解析了网络流与图论原理在电力系统中的实际应用,详细介绍了如何通过构建电力网络模型,利用网络流算法最大化电力消费。文中包括实例输入输出分析、解题思路及代码实现,旨在帮助读者理解复杂电力系统优化问题的解决策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

                                                                Power Network

Description

A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= pmax(u) of power, may consume an amount 0 <= c(u) <= min(s(u),cmax(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= lmax(u,v) of power delivered by u to v. Let Con=Σuc(u) be the power consumed in the net. The problem is to compute the maximum value of Con.

ACM: <wbr>网络流 <wbr>图论 <wbr>poj <wbr>1459


An example is in figure 1. The label x/y of power station u shows that p(u)=x and pmax(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and lmax(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6.

Input

There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of lmax(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of pmax(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of cmax(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input. Input data terminate with an end of file and are correct.

Output

For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.

Sample Input

2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
         (3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
         (0)5 (1)2 (3)2 (4)1 (5)4

Sample Output

15
6

Hint

The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The second data set encodes the network from figure 1.

 

题意:  电网为背景, 给出你节点数和源点,和消耗电力的终点,还有一些节点是中转站不消耗电能.

          问你怎么可以求出最大的输出到全部消耗电力的节点.

 

解题思路:

                1. 网络流问题首先要先设出: 超级源点和超级终点. 我设n为源点,n+1为终点.

                2. 依然采用KM算法求解.

                3. 图论题依然是建图是关键

 

代码:

#include <cstdio>
#include <iostream>
#include <cstring>
#include <queue>
using namespace std;
#define MAX 105
const int INF =(1<<30);

int n, np, nc, m;
int cap[MAX][MAX], flow[MAX][MAX];
int p[MAX];
int a[MAX];

inline int minsize(int a,int b)
{
 return a > b ?  b : a;
}

void read_graph()  //n: 源点. n+1: 终点
{
 int i;
 int u, v, w;
 for(i = 0; i < m; ++i)
 {
  while(getchar() != '(');
  scanf("%d,%d)%d",&u,&v,&w);
  cap[u][v] = w;
 }

 for(i = 0; i < np; ++i)
 {
  while(getchar() != '(');
  scanf("%d)%d",&u,&w);
  cap[n][u] = w;
 }

 for(i = 0; i < nc; ++i)
 {
  while(getchar() != '(');
  scanf("%d)%d",&u,&w);
  cap[u][n+1] = w;
 }
}


int KM()
{
 int result = 0;
 memset(flow,0,sizeof(flow));
 queue<int> qu;

 while(true)
 {
  memset(p,-1,sizeof(p));
  memset(a,0,sizeof(a));
  a[n] = INF;
  qu.push(n);

  while( !qu.empty() )
  {
   int u = qu.front();
   qu.pop();
   for(int v = 0; v < n+2; ++v)
   {
    if(!a[v] && cap[u][v] > flow[u][v])
    {
      p[v] = u;
      qu.push(v);
      a[v] = minsize(a[u],cap[u][v] - flow[u][v]);
    }
   }
  }

  if(a[n+1] == 0) break;

  for(int u = n+1; u != n; u = p[u])
  {
   flow[p[u]][u] += a[n+1];
   flow[u][p[u]] -= a[n+1];
  }

  result += a[n+1];
 }

 return result;
}

int main()
{
// freopen("input.txt","r",stdin);
 while(scanf("%d %d %d %d",&n,&np,&nc,&m) != EOF)
 {
  memset(cap,0,sizeof(cap));
  read_graph();

  printf("%d\n",KM());
 }

 return 0;
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值