import matplotlib.pyplot as plt
import numpy as np
import torch
x_data = torch.Tensor([[1.0], [2.0], [3.0]])
y_data = torch.Tensor([[2.0], [4.0], [6.0]])
w_list = []
b_list = []
mse_list = []
class LinearModel(torch.nn.Module):
"""
线性模型类
"""
def __init__(self):
super(LinearModel, self).__init__()
self.linear = torch.nn.Linear(1, 1)
#Linear(x,y,true)输入维度x,输出维度y,是否带偏置
def forward(self, x):
"""
前向传播
:param x: 输入向量
:return: 前向传播预测值
"""
y_pred = self.linear(x)
return y_pred
# pytorch根据计算图自动求导,不需要定义反向传播函数
#创建线性模型类
model = LinearModel()
# 定义模型的损失函数
criterion = torch.nn.MSELoss(size_average=False)
# criterion = torch.nn.MSELoss(reduction='sum')
# 定义模型的优化器
optimizer = torch.optim.SGD(model.parameters(), lr = 0.01)
# 反向传播更新参数
for epoch in range(100):
y_pred = model.forward(x_data)
loss = criterion(y_pred, y_data)
print(epoch+1, loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
w_list.append(model.linear.weight.item())
mse_list.append(loss.item())
b_list.append((model.linear.bias.item()))
print('w = {}'.format(model.linear.weight.item()))
print('b = {}'.format(model.linear.bias.item()))
#绘图
# x,y = np.meshgrid(w_list,b_list)
ax = plt.axes(projection='3d')
ax.plot3D(w_list,b_list, mse_list)
ax.set_xlabel('w')
ax.set_ylabel('b')
ax.set_zlabel('loss')
plt.show()
pytorch 线性模型LinearModel 的使用
于 2022-05-08 09:35:27 首次发布