天池AI Earth task02

部署运行你感兴趣的模型镜像

Baseline学习

库导入

import pandas as pd
import numpy  as np
import tensorflow as tf
from tensorflow.keras.optimizers import Adam
import matplotlib.pyplot as plt
import scipy 
from netCDF4 import Dataset
import netCDF4 as nc
import gc

数据读取

1.CMIP(SODA)_label处理

标签数据为Nino3.4 SST异常指数,数据维度为(year,month)。
CMIP(SODA)_train.nc对应的标签数据当前时刻Nino3.4 SST异常指数的三个月滑动平均值。

以下代码为读取SODA_label后转化成csv文件:

label_path       = './data/SODA_label.nc'
label_trans_path = './data/'
nc_label         = Dataset(label_path,'r')
 
years            = np.array(nc_label['year'][:])
months           = np.array(nc_label['month'][:])

year_month_index = []
vs               = []
for i,year in enumerate(years):
    for j,month in enumerate(months):
        year_month_index.append('year_{}_month_{}'.format(year,month))
        vs.append(np.array(nc_label['nino'][i,j]))

df_SODA_label               = pd.DataFrame({'year_month':year_month_index}) 
df_SODA_label['year_month'] = year_month_index
df_SODA_label['label']      = vs

df_SODA_label.to_csv(label_trans_path + 'df_SODA_label.csv',index = None)

以下代码为读取CMIP_label后转化成csv文件:

label_path       = './data/CMIP_label.nc'
label_trans_path = './data/'
nc_label         = Dataset(label_path,'r')
 
years            = np.array(nc_label['year'][:])
months           = np.array(nc_label['month'][:])

year_month_index = []
vs               = []
for i,year in enumerate(years):
    for j,month in enumerate(months):
        year_month_index.append('year_{}_month_{}'.format(year,month))
        vs.append(np.array(nc_label['nino'][i,j]))

df_CMIP_label               = pd.DataFrame({'year_month':year_month_index}) 
df_CMIP_label['year_month'] = year_month_index
df_CMIP_label['label']      = vs

df_CMIP_label.to_csv(label_trans_path + 'df_CMIP_label.csv',index = None)

2.SODA_train处理

SODA_train.nc中[0,0:36,:,:]为第1-第3年逐月的历史观测数据;

SODA_train.nc中[1,0:36,:,:]为第2-第4年逐月的历史观测数据; …,
SODA_train.nc中[99,0:36,:,:]为第100-102年逐月的历史观测数据。

自定义抽取对应数据转化为csv的函数:

def trans_df(df, vals, lats, lons, years, months):
    '''
        (100, 36, 24, 72) -- year, month,lat,lon 
    '''
    for j,lat_ in enumerate(lats):
        for i,lon_ in enumerate(lons):
            c = 'lat_lon_{}_{}'.format(int(lat_),int(lon_))  
            v = []
            for y in range(len(years)):
                for m in range(len(months)): 
                    v.append(vals[y,m,j,i])
            df[c] = v
    return df

主代码:

SODA_path        = './data/SODA_train.nc'
nc_SODA          = Dataset(SODA_path,'r')
year_month_index = []

years              = np.array(nc_SODA['year'][:])
months             = np.array(nc_SODA['month'][:])
lats             = np.array(nc_SODA['lat'][:])
lons             = np.array(nc_SODA['lon'][:])


for year in years:
    for month in months:
        year_month_index.append('year_{}_month_{}'.format(year,month))
#读取数据
df_sst  = pd.DataFrame({'year_month':year_month_index}) 
df_t300 = pd.DataFrame({'year_month':year_month_index}) 
df_ua   = pd.DataFrame({'year_month':year_month_index}) 
df_va   = pd.DataFrame({'year_month':year_month_index})
#转换成csv
df_sst = trans_df(df = df_sst, vals = np.array(nc_SODA['sst'][:]), lats = lats, lons = lons, years = years, months = months)
df_t300 = trans_df(df = df_t300, vals = np.array(nc_SODA['t300'][:]), lats = lats, lons = lons, years = years, months = months)
df_ua   = trans_df(df = df_ua, vals = np.array(nc_SODA['ua'][:]), lats = lats, lons = lons, years = years, months = months)
df_va   = trans_df(df = df_va, vals = np.array(nc_SODA['va'][:]), lats = lats, lons = lons, years = years, months = months)
#存储到data中
label_trans_path = './data/'
df_sst.to_csv(label_trans_path  + 'df_sst_SODA.csv',index = None)
df_t300.to_csv(label_trans_path + 'df_t300_SODA.csv',index = None)
df_ua.to_csv(label_trans_path   + 'df_ua_SODA.csv',index = None)
df_va.to_csv(label_trans_path   + 'df_va_SODA.csv',index = None)

3.CMIP_train处理

CMIP_train.nc中[0,0:36,:,:]为CMIP6第一个模式提供的第1-第3年逐月的历史模拟数据;
…,
CMIP_train.nc中[150,0:36,:,:]为CMIP6第一个模式提供的第151-第153年逐月的历史模拟数据;
CMIP_train.nc中[151,0:36,:,:]为CMIP6第二个模式提供的第1-第3年逐月的历史模拟数据; …,
CMIP_train.nc中[2265,0:36,:,:]为CMIP5第一个模式提供的第1-第3年逐月的历史模拟数据; …,
CMIP_train.nc中[2405,0:36,:,:]为CMIP5第二个模式提供的第1-第3年逐月的历史模拟数据; …,
CMIP_train.nc中[4644,0:36,:,:]为CMIP5第17个模式提供的第140-第142年逐月的历史模拟数据。

其中每个样本第三、第四维度分别代表经纬度(南纬55度北纬60度,东经0360度),所有数据的经纬度范围相同。

主代码:

CMIP_path       = './data/CMIP_train.nc'
CMIP_trans_path = './data'
nc_CMIP  = Dataset(CMIP_path,'r')
year_month_index = []

years              = np.array(nc_CMIP['year'][:])
months             = np.array(nc_CMIP['month'][:])
lats               = np.array(nc_CMIP['lat'][:])
lons               = np.array(nc_CMIP['lon'][:])

last_thre_years = 1000
for year in years:
    '''
        数据的原因,因为内存限制,我们暂时取最后1000个year的数据
    '''
    if year >= 4645 - last_thre_years:
        for month in months:
            year_month_index.append('year_{}_month_{}'.format(year,month))

df_CMIP_sst  = pd.DataFrame({'year_month':year_month_index}) 
df_CMIP_t300 = pd.DataFrame({'year_month':year_month_index}) 
df_CMIP_ua   = pd.DataFrame({'year_month':year_month_index}) 
df_CMIP_va   = pd.DataFrame({'year_month':year_month_index})

df_CMIP_sst  = trans_thre_df(df = df_CMIP_sst,  vals   = np.array(nc_CMIP['sst'][:]),  lats = lats, lons = lons, years = years, months = months)
df_CMIP_sst.to_csv(CMIP_trans_path + 'df_CMIP_sst.csv',index = None)
del df_CMIP_sst
gc.collect()

df_CMIP_t300 = trans_thre_df(df = df_CMIP_t300, vals   = np.array(nc_CMIP['t300'][:]), lats = lats, lons = lons, years = years, months = months)
df_CMIP_t300.to_csv(CMIP_trans_path + 'df_CMIP_t300.csv',index = None)
del df_CMIP_t300
gc.collect()

df_CMIP_ua   = trans_thre_df(df = df_CMIP_ua,   vals   = np.array(nc_CMIP['ua'][:]),   lats = lats, lons = lons, years = years, months = months)
df_CMIP_ua.to_csv(CMIP_trans_path + 'df_CMIP_ua.csv',index = None)
del df_CMIP_ua
gc.collect()

df_CMIP_va   = trans_thre_df(df = df_CMIP_va,   vals   = np.array(nc_CMIP['va'][:]),   lats = lats, lons = lons, years = years, months = months)
df_CMIP_va.to_csv(CMIP_trans_path + 'df_CMIP_va.csv',index = None)
del df_CMIP_va

定义转化成csv的函数:

def trans_thre_df(df, vals, lats, lons, years, months, last_thre_years = 1000):
    '''
        (4645, 36, 24, 72) -- year, month,lat,lon 
    '''
    for j,lat_ in (enumerate(lats)):
#         print(j)
        for i,lon_ in enumerate(lons):
            c = 'lat_lon_{}_{}'.format(int(lat_),int(lon_))  
            v = []
            for y_,y in enumerate(years):
                '''
                    数据的原因,我们
                '''
                if y >= 4645 - last_thre_years:
                    for m_,m in  enumerate(months): 
                        v.append(vals[y_,m_,j,i])
            df[c] = v
    return df

数据建模

1. 工具包导入

import pandas as pd
import numpy  as np
import tensorflow as tf
from tensorflow.keras.optimizers import Adam
import matplotlib.pyplot as plt
import scipy 
import joblib
from netCDF4 import Dataset
import netCDF4 as nc 
from tensorflow.keras.callbacks import LearningRateScheduler, Callback
import tensorflow.keras.backend as K
from tensorflow.keras.layers import *
from tensorflow.keras.models import *
from tensorflow.keras.optimizers import *
from tensorflow.keras.callbacks import *
from tensorflow.keras.layers import Input 
import gc

2.标签数据读取

label_path       = './data/SODA_label.nc'
nc_label         = Dataset(label_path,'r')
tr_nc_labels     = nc_label['nino'][:]

3.原始特征数据读取

SODA_path        = './data/SODA_train.nc'
nc_SODA          = Dataset(SODA_path,'r') 

nc_sst           = np.array(nc_SODA['sst'][:])
nc_t300          = np.array(nc_SODA['t300'][:])
nc_ua            = np.array(nc_SODA['ua'][:])
nc_va            = np.array(nc_SODA['va'][:])

4.构建神经网络框架

def RMSE(y_true, y_pred):
    return tf.sqrt(tf.reduce_mean(tf.square(y_true - y_pred)))

def RMSE_fn(y_true, y_pred):
    return np.sqrt(np.mean(np.power(np.array(y_true, float).reshape(-1, 1) - np.array(y_pred, float).reshape(-1, 1), 2)))

def build_model():
    inp    = Input(shape=(12,24,72,4))  
    
    x_4    = Dense(1, activation='relu')(inp)   
    x_3    = Dense(1, activation='relu')(tf.reshape(x_4,[-1,12,24,72]))
    x_2    = Dense(1, activation='relu')(tf.reshape(x_3,[-1,12,24]))
    x_1    = Dense(1, activation='relu')(tf.reshape(x_2,[-1,12]))
     
    x = Dense(64, activation='relu')(x_1)  
    x = Dropout(0.25)(x) 
    x = Dense(32, activation='relu')(x)   
    x = Dropout(0.25)(x)  
    output = Dense(24, activation='linear')(x)   
    model  = Model(inputs=inp, outputs=output)

    adam = tf.optimizers.Adam(lr=1e-3,beta_1=0.99,beta_2 = 0.99) 
    model.compile(optimizer=adam, loss=RMSE)

    return model

5.划分训练集验证集

### 训练特征,保证和训练集一致
tr_features = np.concatenate([nc_sst[:,:12,:,:].reshape(-1,12,24,72,1),nc_t300[:,:12,:,:].reshape(-1,12,24,72,1),\
                              nc_ua[:,:12,:,:].reshape(-1,12,24,72,1),nc_va[:,:12,:,:].reshape(-1,12,24,72,1)],axis=-1)

### 训练标签,取后24个
tr_labels = tr_nc_labels[:,12:] 

### 训练集验证集划分
tr_len     = int(tr_features.shape[0] * 0.8)
tr_fea     = tr_features[:tr_len,:].copy()
tr_label   = tr_labels[:tr_len,:].copy()
 
val_fea     = tr_features[tr_len:,:].copy()
val_label   = tr_labels[tr_len:,:].copy()

6.模型训练

构建模型后将其储存至model_baseline

#### 构建模型
model_mlp     = build_model()
#### 模型存储的位置
model_weights = './model_baseline/model_mlp_baseline.h5'

checkpoint = ModelCheckpoint(model_weights, monitor='val_loss', verbose=0, save_best_only=True, mode='min',
                             save_weights_only=True)

plateau        = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=5, verbose=1, min_delta=1e-4, mode='min')
early_stopping = EarlyStopping(monitor="val_loss", patience=20)
history        = model_mlp.fit(tr_fea, tr_label,
                    validation_data=(val_fea, val_label),
                    batch_size=4096, epochs=200,
                    callbacks=[plateau, checkpoint, early_stopping],
                    verbose=2)

7.模型预测

prediction = model_mlp.predict(val_fea)

8.计算分数

from   sklearn.metrics import mean_squared_error
def rmse(y_true, y_preds):
    return np.sqrt(mean_squared_error(y_pred = y_preds, y_true = y_true))

def score(y_true, y_preds):
    accskill_score = 0
    rmse_scores    = 0
    a = [1.5] * 4 + [2] * 7 + [3] * 7 + [4] * 6
    y_true_mean = np.mean(y_true,axis=0) 
    y_pred_mean = np.mean(y_preds,axis=0) 
#     print(y_true_mean.shape, y_pred_mean.shape)

    for i in range(24): 
        fenzi = np.sum((y_true[:,i] -  y_true_mean[i]) *(y_preds[:,i] -  y_pred_mean[i]) ) 
        fenmu = np.sqrt(np.sum((y_true[:,i] -  y_true_mean[i])**2) * np.sum((y_preds[:,i] -  y_pred_mean[i])**2) ) 
        cor_i = fenzi / fenmu
    
        accskill_score += a[i] * np.log(i+1) * cor_i
        rmse_score   = rmse(y_true[:,i], y_preds[:,i])
#         print(cor_i,  2 / 3.0 * a[i] * np.log(i+1) * cor_i - rmse_score)
        rmse_scores += rmse_score 
    
    return 2 / 3.0 * accskill_score - rmse_scores

模型预测

上面的部分,我们已经训练好了模型,接下来就是提交模型并在线上进行预测,这块可以分为三步:
导入模型
读取测试数据并且进行预测
生成提交所需的版本

1.模型导入

import tensorflow as tf
import tensorflow.keras.backend as K
from tensorflow.keras.layers import *
from tensorflow.keras.models import *
from tensorflow.keras.optimizers import *
from tensorflow.keras.callbacks import *
from tensorflow.keras.layers import Input 
import numpy as np
import os
import zipfile


def RMSE(y_true, y_pred):
    return tf.sqrt(tf.reduce_mean(tf.square(y_true - y_pred)))

def build_model():
    inp    = Input(shape=(12,24,72,4))  
    
    x_4    = Dense(1, activation='relu')(inp)   
    x_3    = Dense(1, activation='relu')(tf.reshape(x_4,[-1,12,24,72]))
    x_2    = Dense(1, activation='relu')(tf.reshape(x_3,[-1,12,24]))
    x_1    = Dense(1, activation='relu')(tf.reshape(x_2,[-1,12]))
     
    x = Dense(64, activation='relu')(x_1)  
    x = Dropout(0.25)(x) 
    x = Dense(32, activation='relu')(x)   
    x = Dropout(0.25)(x)  
    output = Dense(24, activation='linear')(x)   
    model  = Model(inputs=inp, outputs=output)

    adam = tf.optimizers.Adam(lr=1e-3,beta_1=0.99,beta_2 = 0.99) 
    model.compile(optimizer=adam, loss=RMSE)

    return model 


model = build_model()
model.load_weights('./user_data/model_data/model_mlp_baseline.h5')

2.模型预测

test_path = './tcdata/enso_round1_test_20210201/'

### 1. 测试数据读取
files = os.listdir(test_path)
test_feas_dict = {}
for file in files:
    test_feas_dict[file] = np.load(test_path + file)
    
### 2. 结果预测
test_predicts_dict = {}
for file_name,val in test_feas_dict.items():
    #test_predicts_dict[file_name] = model.predict(val).reshape(-1,)
     test_predicts_dict[file_name] = model.predict(val.reshape([-1,12])[0,:])

### 3.存储预测结果
for file_name,val in test_predicts_dict.items(): 
    np.save('./result/' + file_name,val)

3.预测结果打包

#打包目录为zip文件(未压缩)
def make_zip(source_dir='./result/', output_filename = 'result.zip'):
    zipf = zipfile.ZipFile(output_filename, 'w')
    pre_len = len(os.path.dirname(source_dir))
    source_dirs = os.walk(source_dir)
    print(source_dirs)
    for parent, dirnames, filenames in source_dirs:
        print(parent, dirnames)
        for filename in filenames:
            if '.npy' not in filename:
                continue
            pathfile = os.path.join(parent, filename)
            arcname = pathfile[pre_len:].strip(os.path.sep)   #相对路径
            zipf.write(pathfile, arcname)
    zipf.close()
make_zip()

模型构建运行结果:
在这里插入图片描述
但是模型预测结果报错,目前正在解决中。在这里插入图片描述

您可能感兴趣的与本文相关的镜像

Yolo-v5

Yolo-v5

Yolo

YOLO(You Only Look Once)是一种流行的物体检测和图像分割模型,由华盛顿大学的Joseph Redmon 和Ali Farhadi 开发。 YOLO 于2015 年推出,因其高速和高精度而广受欢迎

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值