贝叶斯优化 Bayesian Optimization

本文介绍了贝叶斯优化(Bayesian Optimization, BO)作为一种自动化调参方法,适用于解决昂贵且复杂的黑盒优化问题。主要内容包括:概率代理模型如高斯过程,以及采集函数如probability of improvement (PI)、Expected improvement (EI)和Confidence bound criteria。通过平衡探索与利用,BO能够有效地寻找超参数的最佳组合。" 127427729,8248108,SpringBoot整合Dynamic-Datasource实现多数据源与动态切换,"['spring boot', 'mybatis', 'druid', '多数据源', '动态数据源']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、介绍

  在机器学习的许多模型中,包括决策树、支持向量机、神经网络,都存在着大量的超参数需要凭经验设定(学习率、决策树深度、神经元个数等),也可以使用grid search或者random search的方法进行自动设置。本文介绍另外一种自动化调参的方法贝叶斯优化(Bayesian Optimization,BO)。

二、问题描述

  优化问题的数学形式可以表示为:
x ∗ = a r g m a x x f ( x ) x^* = \mathop{argmax}\limits_{x} f(x) x=xargmaxf(x)

  BO其实是一种优化方法,适用于大部分优化问题,这些问题往往具备以下的几个特点:

  • 优化问题 f f f是一个黑盒(black box)问题,不能得到其解析解
  • 优化问题 f f f的一次评估是昂贵的(耗时,耗money)
  • 该问题的观测值可能存在噪声

三、算法细节

   贝叶斯优化主要由两部分组成,第一个部分是概率代理模型,它由一个先验分布和一个观察模型组成,前者捕捉我们对未知目标函数行为的信念,后者描述数据生成机制。常用的模型有高斯过程模型和随机森林。这类模型有一个特点:既可以对新的输入产生预测的输出也可以产生预测值的不确定性。第二个部分是采集函数(Acquisition function) 用于产生新的 x x x.贝叶斯模型的算法框架如下所示。
在这里插入图片描述

首先可以随机抽样一部分点得到 D = ( x 1 , y 1 ) , ⋯   , ( x m , y m ) D={(x_1,y_1),\cdots,(x_m,y_m)} D=(x1,y1),,(xm,ym)用于构建代理模型,然后通过最大化采集函数 α \alpha α得到下一个点 x n + 1 x_{n+1} xn+1,通过真实的评价函数 f ( x n + 1 ) f(x_{n+1}) f(xn+1)得到观测值 ( x n + 1 , y n + 1 ) (x_{n+1},y_{n+1}) (xn+1,yn+1),将其添加进 D D D中并调整代理模型,进入下一次迭代。
在这里插入图片描述
  下面分别介绍代理模型部分和采集函数。

3.1 概率代理模型

  比较常见的代理模型是高斯过程(GP),具体的介绍可以看这篇笔记:高斯过程
最终的高斯过程可以得到:
在这里插入图片描述
即:

μ = K f y T K f f − 1 f , c o v = K y y − K f y T K f f − 1 K f y \mu = K_{fy}^TK_{ff}^{-1}f,\\ c

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值