投稿:极链科技
作者:点心(AI实验室)
不知不觉,你是否发现身边的小伙伴们都在疯狂的玩抖音,刷微博,你的购物APP也变得越来越聪明,很了解你想要的东西,就连点个外卖,美团和饿了么都知道你想要吃什么呢?是什么黑科技让这些APP变得如此神通,能深深的吸引着你的目光和味蕾呢?其实,之所以你觉得它越来越聪明越来越懂你,当然少不了你跟它之间的亲密“沟通”,看似不经意的一次点击,一次停留,它都默默的记了下来,等待你的再次临幸。这位神秘的幕后主使就是我们今天要讲的——个性化推荐算法。目前它已经深入到互联网的各类产品中,也经历了数次更新迭代,变得越来越贴心了。接下来,我将通过一个近期我们参加比赛具体讲解一些其中的算法原理。
这次比赛是由今日头条主办的短视频内容理解与推荐竞赛,我们的成绩在大规模亿级的赛道中拿了第四名,千万级数据规模的赛道中第五名。这也是我们极链AI实验室首次尝试推荐算法。
首先,来讲讲什么是推荐算法。推荐算法大致可以分为三类:基于内容的推荐算法,协同过滤推荐算法和混合推荐算法。基于内容的推荐算法,原理是将用户喜欢和自己关注过的Item在内容上类似的Item推荐给用户,比如你看了复仇者联盟1,基于内容的推荐算法发现复仇者联盟2、3、4,这些与你以前观看的item在内容上有很大关联性。协同过滤算法,包括基于用户的协同过滤和基于item的协同过滤,其中基于用户的协同过滤是通过用户之间的相似性,挖掘与用户具有相似兴趣的用户喜欢过的item,比如你的朋友喜欢复仇者联盟,那么就会推荐给你。基于item的协同过滤是找到跟用户喜好最相似的商品,然后推给他。混合推荐算法,则会融合以上方法,以加权或者串联、并联等方式进行建模。常用的包括传统机器学习算法如因子分解机(FM,FFM),LR,GBDT,RF和近几年流行起来的DNN和FM结合的算法。
这三种类型的推荐算法各有千秋,内容推荐算法的优点在于可以避免I