提升RAG效果:为何 JSON 格式远胜 Markdown?

在构建强大的 RAG (检索增强生成) 系统时,文档解析是至关重要的第一步。它直接影响着后续的检索效率和生成质量。在众多文档格式中,JSON (JavaScript Object Notation) 格式正逐渐展现出其相对于传统 Markdown 格式的巨大优势。本文将深入探讨 JSON 在 RAG 系统文档解析中的卓越之处,并结合具体案例,让你理解为何 JSON 才是构建下一代智能应用的更优选择。

RAG 系统文档解析的痛点:不止是“看到”文档,更要“理解”文档

RAG 系统的核心目标是让模型能够利用外部知识库,生成更精准、更贴合实际的答案。文档解析的任务,不仅仅是将文档内容提取出来,更重要的是要让系统能够 理解文档的结构、上下文和语义关系。传统的 Markdown 格式在某些方面显得力不从心,而 JSON 格式则能更好地应对这些挑战。

JSON 的五大优势:RAG 系统文档解析的“瑞士军刀”

  1. 结构化层级关系:让文档“脉络清晰”

    Markdown 格式以其简洁性著称,通过简单的符号(如 #, *, -)来表示标题、列表等基本结构。但面对复杂文档时,Markdown 难以清晰表达深层的层级关系。例如,一篇研究论文,可能包含章节、子章节、段落、列表、图表等多个层级。Markdown 只能通过标题层级和简单的列表来勉强表示,但缺乏明确的、可编程的结构化表示。

    JSON 格式则天生具备结构化能力。 它使用键值对 (key-value pairs) 和嵌套结构,可以轻松表达任意深度的层级关系。我们可以将一篇论文解析成如下 JSON 结构:

          {
      "document_title": "基于深度学习的 RAG 系统研究",
      "authors": ["张三", "李四"],
      "chapters": [
        {
          "chapter_title": "引言",
          "sections": [
            {
              "section_title": "研究背景",
              "paragraphs": [
                "RAG 系统是...",
                "本文旨在..."
              ]
            },
            {
              "section_title": "研究意义",
              "paragraphs": [
                "RAG 系统的应用前景广阔...",
                "本研究具有重要的理论和实践意义..."
              ]
            }
          ]
        },
        {
          "chapter_title": "方法",
          "sections": [
            {
              "section_title": "模型架构",
              "paragraphs": [
                "我们提出了...",
                "该模型包括..."
              
### RK3588平台NPU调用方法 #### 创建和初始化NPU环境 为了在RK3588平台上成功调用NPU进行神经网络推理或加速,首先需要确保设备已正确配置并加载了相应的驱动程序。Rockchip的官方固件通常已经预装了RKNPU驱动[^3]。 一旦确认硬件准备就绪,可以通过以下方式创建和初始化NPU环境: ```cpp #include "rknn_api.h" // 初始化模型路径和其他参数 const char* model_path = "./model.rknn"; int ret; rknn_context ctx; ret = rknn_init(&ctx, model_path, 0, 0, NULL); if (ret < 0) { printf("Failed to initialize rknn context\n"); } ``` 这段代码展示了如何使用`rknn_api.h`库来初始化一个RKNN上下文对象,这一步骤对于后续的操作至关重要[^2]。 #### 加载和编译模型 接下来,在实际运行之前还需要加载预先训练好的神经网络模型文件(通常是`.rknn`格式)。此过程涉及读取模型二进制数据,并将其传递给RKNN API以便内部处理和优化。 ```cpp // 假设模型已经被转换成 .rknn 文件格式 char *model_data; // 模型的数据指针 size_t model_size; // 模型大小 FILE *fp = fopen(model_path, "rb+"); fseek(fp, 0L, SEEK_END); model_size = ftell(fp); rewind(fp); model_data = (char *)malloc(sizeof(char)*model_size); fread(model_data, sizeof(unsigned char), model_size, fp); fclose(fp); // 将模型数据传入RKNN API ret = rknn_load_rknn(ctx, &model_data, &model_size); free(model_data); if(ret != 0){ printf("Load Model Failed!\n"); } else{ printf("Model Loaded Successfully.\n"); } ``` 这里说明了从磁盘读取模型文件的具体操作流程,并通过API函数将这些信息提交给了底层框架去解析和设置好用于推断所需的资源[^1]。 #### 执行前向传播计算 当一切准备工作完成后就可以开始真正的预测工作——即让NPU执行一次完整的前向传播运算。这个阶段主要是构建输入张量、启动异步任务以及收集输出结果。 ```cpp float input_tensor[INPUT_SIZE]; // 输入特征图数组 float output_tensors[MAX_OUTPUTS][OUTPUT_SIZE]; // 输出特征图数组 struct rknn_input inputs[] = {{input_tensor}}; struct rknn_output outputs[MAX_OUTPUTS]; for(int i=0;i<NUM_ITERATIONS;++i){ memset(inputs, 0 ,sizeof(struct rknn_input)); memcpy(input_tensor, inputData[i], INPUT_SIZE*sizeof(float)); // 启动推理任务 ret = rknn_run(ctx, nullptr); if(ret!=0){ printf("Inference failed at iteration %d", i); break; } // 获取输出结果 for(size_t j=0;j<num_outputs;++j){ struct rknn_output& out = outputs[j]; size_t bufSize = OUTPUT_SIZE * sizeof(float); void* buffer = malloc(bufSize); ret = rknn_get_output(ctx, j, &out.datatype, &buffer, &bufSize, false); if(!ret && buffer){ memcpy(output_tensors[j], buffer, bufSize); free(buffer); } } } printf("All iterations completed successfully."); ``` 上述片段体现了典型的基于RKNN SDK的应用场景:先准备好待测样本作为输入;接着触发内核中的计算逻辑;最后获取到经过变换后的响应值供下一步分析所用[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

明哲AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值