神经网络训练的优化方法

本文介绍了17种优化PyTorch中神经网络训练的方法,包括使用1Cycle学习率schedule、开启多线程加载数据、调整batch大小、采用自动混合精度训练、使用AdamW优化器、利用cudNN基准、梯度积累和分布式数据并行等,旨在提升训练速度和效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

01 考虑换一种学习率 schedule

学习率 schedule 的选择对模型的收敛速度和泛化能力有很大的影响。Leslie N. Smith 等人在论文《Cyclical Learning Rates for Training Neural Networks》、《Super-Convergence: Very Fast Training of Neural Networks Using Large Learning Rates 》中提出了周期性(Cyclical)学习率以及 1Cycle 学习率 schedule。之后,fast.ai 的 Jeremy Howard 和 Sylvain Gugger 对其进行了推广。下图是 1Cycle 学习率 schedule 的图示:
在这里插入图片描述
Sylvain 写到:1Cycle 包括两个等长的步幅,一个步幅是从较低的学习率到较高的学习率,另一个是回到最低水平。最大值来自学习率查找器选取的值,较小的值可以低十倍。然后,这个周期的长度应该略小于总的 epochs 数,并且,在训练的最后阶段,我们应该允许学习率比最小值小几个数量级。与传统的学习率 schedule 相比,在最好的情况下,该 schedule 实现了巨大的加速(Smith 称之为超级收敛)。例如,使用 1Cycle 策略在 ImageNet 数据集上训练 ResNet-56,训练迭代次数减少为原来的 1/10,但模型性能仍能比肩原论文中的水平。在常见的体系架构和优化器中,这种 schedule 似乎表现得很好。

Pytorch 已经实现了这两种方法:「torch.optim.lr_scheduler.CyclicLR」和「torch.optim.lr_scheduler.OneCycleLR」。
参考文档:https://pytorch.org/docs/stable/optim.html

02 在DataLoader中使用多个worker和页锁定内存

当使用 torch.utils.data.DataLoader 时,设置 num_workers > 0,而不是默认值 0,同时设置 pin_memory=True,而不是默认值 False。

参考文档:https://pytorch.org/docs/stable/data.html

来自 NVIDIA 的高级 CUDA 深度学习算法软件工程师 Szymon Micacz 就曾使用四个 worker 和页锁定内存(pinned memory)在单个 epoch 中实现了 2 倍的加速。人们选择 worker 数量的经验法则是将其设置为可用 GPU 数量的四倍,大于或小于这个数都会降低训练速度。请注意,增加 num_workers 将增加 CPU 内存消耗。

03 把batch调到最大

把 batch 调到最大是一个颇有争议的观点。一般来说,如果在 GPU 内存允许的范围内将 batch 调到最大,你的训练速度会更快。但是,你也必须调整其他超参数,比如学习率。一个比较好用的经验是,batch 大小加倍时,学习率也要加倍。

OpenAI 的论文《An Empirical Model of Large-Batch Training》很好地论证了不同的 batch 大小需要多少步才能收敛。在《How to get 4x speedup and better generalization using the right batch size》一文中,作者 Daniel Huynh 使用不同的 batch 大小进行了一些实验(也使用上面讨论的 1Cycle 策略)。

最终,他将 batch 大小由 64 增加到 512,实现了 4 倍的加速。然而,使用大 batch 的不足是,这可能导致解决方案的泛化能力比使用小 batch 的差。

04 使用自动混合精度

PyTorch 1.6 版本包括对 PyTorch

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值