神经网络算法的基本原理,人工神经网络算法步骤

本文探讨了深度神经网络的工作流程,强调它并非黑盒,而是基于传统计算架构的数据和算法驱动。深度学习是特征提取的自动化工具,同时也是一种自动编程方式。文章还介绍了神经网络的应用步骤,特别是在MATLAB中BP神经网络的训练过程,并概述了卷积神经网络的结构和优势。此外,讨论了BP算法的两个关键过程和数学模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深度神经网络具体的工作流程是什么样的?

第一,深度神经网络不是黑盒,个人电脑开机直到神经网络运行在内存中的每一比特的变化都是可以很细微的观察的。没有任何神秘力量,没有超出科学解释的现象发生。

第二,深度神经网络的工作方式是基于传统的电脑架构之上的,就是数据+算法。但人们确实从中窥探到了一种全新的电子大脑方式。所以目前有研究提炼一些常用神经网络算法加速硬件。微软等巨头则在开发量子计算。

第三,深度神经网络是一个很初级的特征自动提取器。说初级因为简单粗暴。以前为了节约算力特征关键模型都是人工亲自设定。而现在这部分工作随着算力的提高可以自动化。

所以从某种意义上来说深度神经网络也是一种自动编程机,但和人们相比,一点点小小的自动化都需要很多很多的计算力支持,这一点也不重要,重要的是,它能工作(手动英文)。那么深度神经网络究竟是什么呢?

它是一个能迭代更新自己的特征提取算法。现在这个算法可是像全自动高级工厂,数据往里一丢,不得了!整个工厂里面所有机器都动了起来。没见过的小伙伴当场就被吓呆瓜了,用流行的话说叫懵住。

几千只机械手把数据搬来搬去,拿出魔方一样的盒子装来装去又倒出来。整个场面就叫一个震撼。算法运行规模也更大了。

神经网络应用分几个具体步骤?

MATLAB中BP神经网络的训练算法具体是怎么样的

先用newff函数建立网络,再用train函数训练即可。

1)正向传播:输入样本->输入层->各隐层

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值