Longest Ordered Subsequence
| Time Limit: 2000MS | Memory Limit: 65536K | |
| Total Submissions: 50206 | Accepted: 22293 |
Description
A numeric sequence of
ai is ordered if
a1 <
a2 < ... <
aN. Let the subsequence of the given numeric sequence (
a1,
a2, ...,
aN) be any sequence (
ai1,
ai2, ...,
aiK), where 1 <=
i1 <
i2 < ... <
iK <=
N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).
Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Input
The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000
Output
Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.
Sample Input
7 1 7 3 5 9 4 8
Sample Output
4
Source
Northeastern Europe 2002, Far-Eastern Subregion
题意:
给定的 n 个数,求出从左往右非递减的子序列的最大值
思路:
模板题,就过来水水题的!
AC CODE:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
const int MM = 200100+4;
using namespace std;
int h[MM], d[MM], Ans[MM];
int main()
{
int n;
cin >> n;
for(int i = 1; i <= n; i++) cin >> h[i];
int ans = 0, vv = 0;
for(int i = 1; i <= n; i++)
{
d[i] = 1;
for(int j = 1; j <= i-1; j++)
{
if(h[j] < h[i] && d[i] < d[j]+1)
{
d[i] = d[j] + 1;
}
}
if(d[i] > ans) ans = d[i];
}
printf("%d\n", ans);
return 0;
}
本文介绍了一道经典的编程竞赛题目——寻找给定序列中最长的非降子序列。文章提供了一个完整的C++实现代码示例,并通过注释解释了核心思路。
636

被折叠的 条评论
为什么被折叠?



