Longest Ordered Subsequence

本文介绍了一种寻找最长递增子序列的有效算法,通过动态规划结合二分查找技术,解决给定序列中最长有序子序列的问题。适用于编程竞赛及算法优化场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A numeric sequence of ai is ordered if a1 < a2 < … < aN. Let the subsequence of the given numeric sequence ( a1, a2, …, aN) be any sequence ( ai1, ai2, …, aiK), where 1 <= i1 < i2 < … < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Input
The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000
Output
Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.
Sample Input
7
1 7 3 5 9 4 8
Sample Output
4

解题思路:
找到最长的递增序列,可以用dp加二分的方法来筛选,把该序列存入数组b中,如果当前数比b中最大的数大,那就加入最后一个位置。如果比最后一个小的话,那就用二分找到b中比当前数大的最小数,这样既可以保证结果最优,又可以保证b的序列长度不变,一举两得。
AC代码如下:

#include<stdio.h>
#include<stdlib.h>
#include<iostream>
#include<stack>
using namespace std;
const int N = 1e5+10;
int a[N],b[N];
int check(int *a, int l, int r, int x)
{//二分
	int L = l;
	int R = r;
	while(L < R)
	{
		int M = (R + L) / 2;
		if(a[M] <= x)
		   L = M + 1;
		else R = M;
	}
	return R;
}
int main()
{
	int n;
	cin >> n;
	for(int i = 0; i < n; i++)
	{
		cin >> a[i];
	}
	int cur=0;
	b[0]=-99999999;
	for(int i = 0; i < n; i++)
	{
		if(a[i] > b[cur])
		{
			cur++;
			b[cur] = a[i];
			//cur++;
		}
		else if(a[i] < b[cur])
		{
			b[check(b, 1, cur, a[i])] = a[i];
		}
	}
	cout << cur << endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值