bool judge(int n)
{
if(n==1)
return false;
if(n==2||n==3||n==5||n==7)
{
return true;
}
if(n%2==0)
return false;
for(int i=3;i*i<=n;i+=2)
{
if(n%i==0)
return false;
}
return true;
}
class Solution {
public:
int countPrimes(int n) {
int i,j,k;
if(n==2||n==1)
return 0;
// bool *a=new bool[n];
j=0;
for(i=1;i<n;i++)
{
if(judge(i))
j++;
}
// delete a;
return j;
}
};
这个第一个版本的解法,ac时间为536MS。太慢了。考虑简单一点的解法。
要得到自然数n以内的全部素数,必须把不大于
的所有素数的倍数剔除,剩下的就是素数。
给出要筛数值的范围n,找出以内的素数。先用2去筛,即把2留下,把2的倍数剔除掉;再用下一个质数,也就是3筛,把3留下,把3的倍数剔除掉;接下去用下一个质数5筛,把5留下,把5的倍数剔除掉;不断重复下去......。
步骤
详细列出算法如下:
列出2以后的所有序列:
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
标出序列中的第一个素数,也就是2,序列变成:
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
将剩下序列中,划掉2的倍数,序列变成:
2 3 5 7 9 11 13 15 17 19 21 23 25
如果现在这个序列中最大数小于最后一个标出的素数的平方,那么剩下的序列中所有的数都是素数,否则回到第二步。
本例中,因为25大于2的平方,我们返回第二步:
剩下的序列中第一个素数是3,将主序列中3的倍数划掉,主序列变成:
2 3 5 7 11 13 17 19 23 25
我们得到的素数有:2,3
25仍然大于3的平方,所以我们还要返回第二步:
现在序列中第一个素数是5,同样将序列中5的倍数划掉,主序列成了:
2 3 5 7 11 13 17 19 23
我们得到的素数有:2,3,5 。
因为23小于5的平方,跳出循环.
结论:2到25之间的素数是:2 3 5 7 11 13 17 19 23。
考虑用这个来解题