yolo
yolov9论文代码:https://github.com/WongKinYiu/yolov9
yolov9论文链接:https://arxiv.org/abs/2402.13616
yolov10论文代码:https://github.com/THU-MIG/yolov10
yolov10论文链接:https://arxiv.org/abs/2405.14458
Conv
是Conv2d+BN+SiLU
ch_in
是输入通道 ch_out
是输出通道
1 YOLOv8
1.1 C2f
n是由下面代码决定的
,C1
是ch_in
,C2
是ch_out
n = n_ = max(round(n * depth), 1) if n > 1 else n # depth gain
这个depth
的值是来源于yolov8.yaml文件
# [depth, width, max_channels]
n: [0.33, 0.25, 1024] # YOLOv8n summary
n
也是来源于yolov8n.yaml文件
# [from, repeats, module, args]
- [-1, 6, C2f, [256, True]] # 这个repeats=6就是n
n = n_ = max(round(n * depth), 1) if n > 1 else n
n = max(round(6 * 0.33), 1) = 2
# 最终这个C2f中Bottleneck重复了两次
class C2f(nn.Module):
"""Faster Implementation of CSP Bottleneck with 2 convolutions."""
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
"""Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
expansion.
"""
super().__init__()
self.c = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2)
self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
def forward(self, x):
"""Forward pass through C2f layer."""
y = list(self.cv1(x).chunk(2, 1))
y.extend(m(y[-1]) for m in self.m)
return self.cv2(torch.cat(y, 1))
def forward_split(self, x):
"""Forward pass using split() instead of chunk()."""
y = list(self.cv1(x).split((self.c, self.c), 1))
y.extend(m(y[-1]) for m in self.m)
return self.cv2(torch.cat(y, 1))
1.2 Detect
class Detect(nn.Module):
# YOLO Detect head for detection models
dynamic = False # force grid reconstruction
export = False # export mode
shape = None
anchors = torch.empty(0) # init
strides = torch.empty(0) # init
def __init__(self, nc=80, ch=(), inplace=True): # detection layer
super().__init__()
self.nc = nc # number of classes
self.nl = len(ch) # number of detection layers
self.reg_max = 16
self.no = nc + self.reg_max * 4 # number of outputs per anchor
self.inplace = inplace # use inplace ops (e.g. slice assignment)
self.stride = torch.zeros(self.nl) # strides computed during build
c2, c3 = max((ch[0] // 4, self.reg_max * 4, 16)), max((ch[0], min((self.nc * 2, 128)))) # channels
self.cv2 = nn.ModuleList(
nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch)
self.cv3 = nn.ModuleList(
nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)
self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()
def forward(self, x):
shape = x[0].shape # BCHW
for i in range(self.nl):
x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
if self.training:
return x
elif self.dynamic or self.shape != shape:
self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
self.shape = shape
box, cls = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2).split((self.reg_max * 4, self.nc), 1)
dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
y = torch.cat((dbox, cls.sigmoid()), 1)
return y if self.export else (y, x)
def bias_init(self):
# Initialize Detect() biases, WARNING: requires stride availability
m = self # self.model[-1] # Detect() module
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
a[-1].bias.data[:] = 1.0 # box
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
2 YOLOv9
2.1 ADown
C1
是ch_in
,C2
是ch_out
class ADown(nn.Module):
def __init__(self, c1, c2): # ch_in, ch_out, shortcut, kernels, groups, expand
super().<