Hsu jailed upon his leaving hospital

一名曾两次逃避法律制裁的民主党筹款人诺曼·胡,在科罗拉多州被捕。胡因1992年诈骗罪未接受判决而逃离。目前,当局计划将其引渡回加利福尼亚接受审判。
部署运行你感兴趣的模型镜像

A high-profile Democratic fundraiser who has fled twice from a 15-year-old grand theft conviction in the Bay Area was jailed in Colorado on Wednesday after being released from a hospital, where he had been treated for an unspecified ailment that got in the way of his latest escape.

Norman Hsu is now one step closer to returning to San Mateo County, where he pleaded no contest in 1992 to charges of defrauding investors by running a Ponzi scheme, but skipped town before he could be sentenced.

Hsu, 56, was moved Wednesday from St. Mary's Hospital in Grand Junction to the Mesa County jail, where he was booked at 6:30 p.m. MDT. He was arrested on federal charges of unlawful flight to avoid prosecution, but spokesmen for the FBI and the Mesa County Sheriff's Department said those charges would be dropped so California prosecutors can pursue their case.

Authorities will seek to extradite Hsu to San Mateo County. A court hearing on his status, conducted by video feed from the jail, is scheduled for today.

Hsu was supposed to have appeared in a Redwood City courtroom Sept. 5 for a bail-reduction hearing in his fraud case, but instead boarded Amtrak's eastbound California Zephyr that morning in Emeryville. He was taken off the train by paramedics the next day in Grand Junction after he stripped off his shirt and shoes and behaved erratically, witnesses and authorities said.

Hsu forfeited his $2 million bail.

Court documents filed by the FBI said the agency was alerted by phone that Hsu was at St. Mary's Hospital. A person familiar with the episode said someone at the hospital who was trying to figure out Hsu's identity called a number left on his cell phone. That person called the California attorney general's office, which alerted the FBI.

Hsu's attorney, James Brosnahan, said last week that Hsu had been under stress since his arrest Aug. 31 for skipping out on his 1992 sentencing. Hsu faced three years in prison before he dropped out of sight.

He reappeared in the late 1990s as a political rainmaker, raising hundreds of thousands of dollars for Democratic candidates in the past few years.

Democratic presidential candidate Hillary Rodham Clinton's campaign said this week that it would return $850,000 from 260 donors whose contributions were arranged by Hsu. But Wednesday, Clinton told reporters that those donors were free to contribute to her campaign again on their own.

Also Wednesday, New York City District Attorney Robert Morgenthau said he has opened an investigation into $40 million in business deals that Hsu has signed in recent years with Source Financing Investments, an investment group run by financier Joel Rosenman.

The Wall Street Journal said Rosenman, one of the creators of the 1969 Woodstock rock festival, has reported the money missing.

 

您可能感兴趣的与本文相关的镜像

ComfyUI

ComfyUI

AI应用
ComfyUI

ComfyUI是一款易于上手的工作流设计工具,具有以下特点:基于工作流节点设计,可视化工作流搭建,快速切换工作流,对显存占用小,速度快,支持多种插件,如ADetailer、Controlnet和AnimateDIFF等

一、 内容概要 本资源提供了一个完整的“金属板材压弯成型”非线性仿真案例,基于ABAQUS/Explicit或Standard求解器完成。案例精确模拟了模具(凸模、凹模)与金属板材之间的接触、压合过程,直至板材发生塑性弯曲成型。 模型特点:包含完整的模具-工件装配体,定义了刚体约束、通用接触(或面面接触)及摩擦系数。 材料定义:金属板材采用弹塑性材料模型,定义了完整的屈服强度、塑性应变等真实应力-应变数据。 关键结果:提供了成型过程中的板材应力(Mises应力)、塑性应变(PE)、厚度变化​ 云图,以及模具受力(接触力)曲线,完整再现了压弯工艺的力学状态。 二、 适用人群 CAE工程师/工艺工程师:从事钣金冲压、模具设计、金属成型工艺分析与优化的专业人员。 高校师生:学习ABAQUS非线性分析、金属塑性成形理论,或从事相关课题研究的硕士/博士生。 结构设计工程师:需要评估钣金件可制造性(DFM)或预测成型回弹的设计人员。 三、 使用场景及目标 学习目标: 掌握在ABAQUS中设置金属塑性成形仿真的全流程,包括材料定义、复杂接触设置、边界条件与载荷步。 学习如何调试和分析大变形、非线性接触问题的收敛性技巧。 理解如何通过仿真预测成型缺陷(如减薄、破裂、回弹),并与理论或实验进行对比验证。 应用价值:本案例的建模方法与分析思路可直接应用于汽车覆盖件、电器外壳、结构件等钣金产品的冲压工艺开发与模具设计优化,减少试模成本。 四、 其他说明 资源包内包含参数化的INP文件、CAE模型文件、材料数据参考及一份简要的操作要点说明文档。INP文件便于用户直接修改关键参数(如压边力、摩擦系数、行程)进行自主研究。 建议使用ABAQUS 2022或更高版本打开。显式动力学分析(如用Explicit)对计算资源有一定要求。 本案例为教学与工程参考目的提供,用户可基于此框架进行拓展,应用于V型弯曲
### MIA-HSU 方法在提取斜坡单元中的应用 MIA-HSU 是一种基于多模态交互注意力机制的方法,在地理信息系统 (GIS) 和遥感领域中被广泛应用于复杂地形特征的识别与分类。该方法通过融合多种数据源的信息来提高对特定目标(如斜坡单元)的检测精度。 #### 数据预处理 为了有效利用 MIA-HSU 进行斜坡单元提取,通常需要准备高分辨率的遥感影像以及对应的 DEM(数字高程模型)。这些数据经过初步处理后输入到网络中[^1]。具体来说: - **遥感影像**:提供丰富的纹理和光谱信息。 - **DEM 数据**:用于计算地形属性,例如坡度、坡向等。 这两种数据形式可以视为不同的模态,因此非常适合采用多模态学习框架进行联合建模。 #### 特征提取器设计 MIA-HSU 的核心之一是其 Feature Extractor 模块,它负责从不同类型的输入数据中抽取高层次语义特征。对于 GIS 应用场景而言,这一部分可能由卷积神经网络构成,能够自动捕捉空间模式并减少手工定义参数的需求[^1]。 ```python import torch.nn as nn class FeatureExtractor(nn.Module): def __init__(self, input_channels=3): super(FeatureExtractor, self).__init__() self.conv_layers = nn.Sequential( nn.Conv2d(input_channels, 64, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=2) ) def forward(self, x): return self.conv_layers(x) ``` 以上代码片段展示了一个简单的 CNN 架构作为基础特征提取组件的一部分。 #### 多模态交互模块(MIA Module) 另一个关键技术点在于如何有效地整合来自多个传感器的数据流。MIA module 利用了自注意力机制,使得每种模态之间的关系得以显式表达出来,从而增强了最终决策层的表现力[^1]。 假设存在两个独立路径分别对应图像像素级表示及其衍生的高度场,则它们之间可能存在复杂的依赖结构需进一步挖掘。 #### 输出阶段 最后一步涉及回归或者分类操作取决于实际任务需求。如果目的是定量评估某个区域内的潜在滑动风险等级那么可以选择前者;而后者更适合区分已知类别标签的情况比如稳定 vs 不稳定的边坡状态划分[^1]。 --- ### 总结 综上所述,借助于先进的深度学习技术如 MIA-HSU 可以为传统意义上的地质灾害防治工作带来全新视角下的解决方案思路。这种方法不仅限定了单一维度上的考量因素同时也兼顾到了跨学科交叉合作的可能性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值