zedboard axiDMA linux驱动

写在前面的话:

本篇是AXI DMA在linux下使用的例子。

包括PL端设计,基于vivado 2015.4,petalinux 2016.1,基于linux 4.4内核。

我在git hub 上托管了代码,https://github.com/shichaog/zynq-dma,如果想加入github上这个项目,给我邮箱发信息shichaog@126.com,方便为你配权限。

1.PL端设计:

PL端设计包括四个AXI DMA IP,它们分别和zynq处理IP的HP口相连接。

这个设计是基于Avnet-Digilent-ZedBoard-v2016.1-final.bsp,由于其它的ip都是xilinx开发环境开发环境就有,所以这里就不详细每一步设计过程了。

这些IP包括AXI interconnect, system reset,axi dma,concat。

注意concat是用来将AXI DMA的中断传递给zynq之用的,这是必须有的,否则在hdf导入时,会出现如下错误:

2 接下来是创建module和app了


这两个命令执行后,会分配在components/apps和components/modules目录下生成dmaBench和ds_axidma两个文件夹,该文件下的两个文件内容使用如下的文件替换。

《dmaBench.c》
#include <stdio.h>
#include <fcntl.h>
#include <string.h>
#include <stdlib.h>
#include <sys/time.h>

unsigned long tStart, tEnd;
unsigned long data;

unsigned long getTime(){
	struct timeval temp;

	gettimeofday(&temp, NULL);

	return temp.tv_sec * 1000 * 1000 + temp.tv_usec;
}

void report(char *msg, unsigned long data, unsigned long time, unsigned long dmaUsed){
	printf("%s\t%ld\t%ld\t%f\t%d\n", msg, data, time, data * 1.0 / time, dmaUsed);
	FILE *f = fopen("report.dat", "a");
	fprintf(f, "%s\t%ld\t%ld\t%f\t%d\n", msg, data, time, data * 1.0 / time, dmaUsed);
	fclose(f);
}

#define REPORT(f, timeStart, timeEnd, dataPtr, msg, dmaUsed) *timeStart = getTime(); *dataPtr = f; *timeEnd = getTime(); report(msg, *dataPtr, *timeEnd - *timeStart, dmaUsed);

void checkData(char *bufferIn, char *bufferOut, unsigned int elems){
	int i;

	if(!memcmp(bufferIn, bufferOut, elems*sizeof(char))){
		printf("DMA Ok!\n");
	}
	else{
		for(i=0;i<elems;i++)
			printf("%d\t%d\t%d\t%d\n", i, bufferIn[i], bufferOut[i], (i==0 ? 0 : bufferOut[i] - bufferOut[i-1]));
	}
}

unsigned long memCpy_ARM(char *bufferIn, char *bufferOut, unsigned long elems, size_t size){
	int i;

	for(i=0; i<elems; i++)
		bufferOut[i] = bufferIn[i];

	return elems * size;
}

unsigned long memCpy_DMA(char *bufferIn, char *bufferOut, unsigned long elems, size_t size, int dmaToUse){

#define FIFO_LEN 4000
#define DMA_NUM 4

	int fd[DMA_NUM];

	fd[0] = open("/dev/axi_dma_0", O_RDWR);
	fd[1] = open("/dev/axi_dma_1", O_RDWR);
	fd[2] = open("/dev/axi_dma_2", O_RDWR);
	fd[3] = open("/dev/axi_dma_3", O_RDWR);

	unsigned long byteMoved = 0;
	unsigned long byteToMove = 0;

	int i;

	while(byteMoved!=size * elems){
		byteToMove = size * elems - byteMoved > FIFO_LEN ? FIFO_LEN : size * elems - byteMoved;

		for(i=0; i<dmaToUse; i++){
			write(fd[i], &bufferIn[byteMoved], byteToMove);
		}

		for(i=0; i<dmaToUse; i++)
			read(fd[i], &bufferOut[byteMoved], byteToMove);

		byteMoved += byteToMove;
	}

	close(fd[0]);
	close(fd[1]);
	close(fd[2]);
	close(fd[3]);

	return elems * size * dmaToUse;
}

int main(int argc, char **argv)
{
    char *bufferIn, *bufferOut_ARM, *bufferOut_DMA;

    if(argc!=3){
    	printf("Usage: ./dmaBench DATA DMA_TO_USE\n");
    	exit(0);
    }

    unsigned long DATA = atoi(argv[1]);
    unsigned int DMA_TO_USE = atoi(argv[2]);

    bufferIn = (char *) malloc(sizeof(char) * DATA);
    bufferOut_ARM = (char *) malloc(sizeof(char) * DATA);
    bufferOut_DMA = (char *) malloc(sizeof(char) * DATA);

    int i;

    for(i=0; i<DATA; i++){
    	bufferIn[i] = i;
    }

    memset(bufferOut_ARM, 0, sizeof(char) * DATA);
    memset(bufferOut_DMA, 0, sizeof(char) * DATA);

    REPORT(memCpy_ARM(bufferIn, bufferOut_ARM, DATA, sizeof(char)), &tStart, &tEnd, &data, "ARM", 0);
    for(i=0; i<DMA_TO_USE; i++){
    	REPORT(memCpy_DMA(bufferIn, bufferOut_DMA, DATA/(i+1), sizeof(char), (i+1)), &tStart, &tEnd, &data, "DMA", (i+1));
    }

    checkData(bufferIn, bufferOut_ARM, DATA);
    checkData(bufferIn, bufferOut_DMA, DATA);

    return 0;
}
和<ds_axidma>

/*
 * Xilinx AXI DMA Driver
 *
 * Authors: 
 *    Fabrizio Spada - fabrizio.spada@mail.polimi.it
 *    Gianluca Durelli - durelli@elet.polimi.it
 *    Politecnico di Milano
 *
 * This is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#include <linux/module.h>
#include <linux/version.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/kdev_t.h>
#include <linux/fs.h>
#include <linux/list.h>
#include <linux/device.h>
#include <linux/cdev.h>
#include <linux/dma-mapping.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/of_address.h>
#include <linux/mm.h>
#include <asm/io.h>

#define MM2S_DMACR	0x00
#define MM2S_DMASR	0x04
#define MM2S_SA	0x18
#define MM2S_LENGTH	0x28

#define S2MM_DMACR	0x30
#define S2MM_DMASR	0x34
#define S2MM_DA	0x48
#define S2MM_LENGTH	0x58

#define DRIVER_NAME "ds_axidma_pdrv"
#define MODULE_NAME "ds_axidma"

#define DMA_LENGTH	(32*1024)

static struct class *cl;	// Global variable for the device class 

struct ds_axidma_device
{
	phys_addr_t bus_addr;
	unsigned long bus_size;
	char *virt_bus_addr;
	dev_t dev_num;
	const char *dev_name;
	struct cdev c_dev;
	char *ds_axidma_addr;
	dma_addr_t ds_axidma_handle;

	struct list_head dev_list;
};
LIST_HEAD( full_dev_list );

static struct ds_axidma_device *get_elem_from_list_by_inode(struct inode *i)
{
	struct list_head *pos;
	struct ds_axidma_device *obj_dev = NULL;
	list_for_each( pos, &full_dev_list ) {
		struct ds_axidma_device *tmp;
    	tmp = list_entry( pos, struct ds_axidma_device, dev_list );
    	if (tmp->dev_num == i->i_rdev)
    	{
    		obj_dev = tmp;
    		break;
    	}
  	}
  	return obj_dev;	
}
// static void dmaHalt(void){
// 	unsigned long mm2s_halt = ioread32(virt_bus_addr + MM2S_DMASR) & 0x1;
// 	unsigned long s2mm_halt = ioread32(virt_bus_addr + S2MM_DMASR) & 0x1;
// 	int count = 0;
// 	printk(KERN_INFO "Halting...\n");
// 	iowrite32(0, virt_bus_addr + S2MM_DMACR);
// 	iowrite32(0, virt_bus_addr + MM2S_DMACR);
// 	while( !mm2s_halt || !s2mm_halt){
// 		// mm2s_halt = ioread32(virt_bus_addr + MM2S_DMASR) & 0x1;
// 		mm2s_halt = virt_bus_addr[MM2S_DMASR] & 0x1;
// 		//s2mm_halt = ioread32(virt_bus_addr + S2MM_DMASR) & 0x1;
// 		s2mm_halt = virt_bus_addr[S2MM_DMASR] & 0x1;
// 		count++;
// 		if (count>100 )
// 		{
// 			break;
// 		}
// 	}

// 	printk(KERN_INFO "DMA Halted!\n");
// }

static int my_strcmp(const char *str1, const char *str2)
{
  int i;
  i = 0;
  while (str1[i] || str2[i])
    {
      if (str1[i] != str2[i])
        return (str1[i] - str2[i]);
      i++;
    }
  return (0);
}

static int dmaSynchMM2S(struct ds_axidma_device *obj_dev){
	//	sleep(6);
	//	return;

	unsigned int mm2s_status = ioread32(obj_dev->virt_bus_addr + MM2S_DMASR);
	while(!(mm2s_status & 1<<12) || !(mm2s_status & 1<<1) ){
		mm2s_status = ioread32(obj_dev->virt_bus_addr + MM2S_DMASR);

	}
	return 0;
}

static int dmaSynchS2MM(struct ds_axidma_device *obj_dev){
	unsigned int s2mm_status = ioread32(obj_dev->virt_bus_addr + S2MM_DMASR);
	while(!(s2mm_status & 1<<12) || !(s2mm_status & 1<<1)){
		s2mm_status = ioread32(obj_dev->virt_bus_addr + S2MM_DMASR);
	}
	return 0;
}

static int ds_axidma_open(struct inode *i, struct file *f)
{
	/* printk(KERN_INFO "<%s> file: open()\n", MODULE_NAME); */
	struct ds_axidma_device *obj_dev = get_elem_from_list_by_inode(i);
	if (!request_mem_region(obj_dev->bus_addr, obj_dev->bus_size, MODULE_NAME))
	{
		return -1;
	}	
	obj_dev->virt_bus_addr = (char *) ioremap_nocache(obj_dev->bus_addr, obj_dev->bus_size);
	return 0;
}

static int ds_axidma_close(struct inode *i, struct file *f)
{
	/* printk(KERN_INFO "<%s> file: close()\n", MODULE_NAME); */
	struct ds_axidma_device *obj_dev = get_elem_from_list_by_inode(i);
	iounmap(obj_dev->virt_bus_addr);
	release_mem_region(obj_dev->bus_addr, obj_dev->bus_size);
	return 0;
}

static ssize_t ds_axidma_read(struct file *f, char __user * buf, size_t
			 len, loff_t * off)
{
	/* printk(KERN_INFO "<%s> file: read()\n", MODULE_NAME); */
	struct ds_axidma_device *obj_dev;
	if (len >= DMA_LENGTH)
	{
		return 0;
	}
	obj_dev = get_elem_from_list_by_inode(f->f_inode);
	iowrite32(1, obj_dev->virt_bus_addr + S2MM_DMACR);
	iowrite32(obj_dev->ds_axidma_handle, obj_dev->virt_bus_addr + S2MM_DA);
	iowrite32(len, obj_dev->virt_bus_addr + S2MM_LENGTH);
	dmaSynchS2MM(obj_dev);
	memcpy(buf, obj_dev->ds_axidma_addr, len);
	return len;
}

static ssize_t ds_axidma_write(struct file *f, const char __user * buf,
			  size_t len, loff_t * off)
{
	/* printk(KERN_INFO "<%s> file: write()\n", MODULE_NAME); */

	struct ds_axidma_device *obj_dev;
	if (len >= DMA_LENGTH)
	{
		return 0;
	}

	obj_dev = get_elem_from_list_by_inode(f->f_inode);
	memcpy(obj_dev->ds_axidma_addr, buf, len);

	// printk(KERN_INFO "%X\n", ioread32(virt_bus_addr + MM2S_DMASR));
	// printk(KERN_INFO "%X\n", ioread32(virt_bus_addr + MM2S_DMACR));
	// printk(KERN_INFO "%X\n", ioread32(virt_bus_addr + S2MM_DMASR));
	// printk(KERN_INFO "%X\n", ioread32(virt_bus_addr + S2MM_DMACR));

	iowrite32(1, obj_dev->virt_bus_addr + MM2S_DMACR);
	iowrite32(obj_dev->ds_axidma_handle, obj_dev->virt_bus_addr + MM2S_SA);
	iowrite32(len, obj_dev->virt_bus_addr + MM2S_LENGTH);

	// dmaSynchMM2S(obj_dev);

	// printk(KERN_INFO "%X\n", ioread32(virt_bus_addr + MM2S_DMASR));
	// printk(KERN_INFO "%X\n", ioread32(virt_bus_addr + MM2S_DMACR));
	// printk(KERN_INFO "%X\n", ioread32(virt_bus_addr + S2MM_DMASR));
	// printk(KERN_INFO "%X\n", ioread32(virt_bus_addr + S2MM_DMACR));	
	// printk(KERN_INFO "%X\n", bus_addr);
	// printk(KERN_INFO "%lu\n", bus_size);

	return len;
}

static struct file_operations fops = {
	.owner = THIS_MODULE,
	.open = ds_axidma_open,
	.release = ds_axidma_close,
	.read = ds_axidma_read,
	.write = ds_axidma_write,
	/* .mmap = ds_axidma_mmap, */
	/* .unlocked_ioctl = ds_axidma_ioctl, */
};

static int ds_axidma_pdrv_probe(struct platform_device *pdev)
{
	/* device constructor */
	struct ds_axidma_device *obj_dev = (struct ds_axidma_device *)
            kmalloc( sizeof(struct ds_axidma_device), GFP_KERNEL );
    obj_dev->bus_addr = pdev->resource[0].start;
    obj_dev->bus_size = pdev->resource[0].end - pdev->resource[0].start + 1;
	obj_dev->dev_name = pdev->name + 9;
	
	printk(KERN_INFO "<%s> init: registered\n", obj_dev->dev_name);
	if (alloc_chrdev_region(&(obj_dev->dev_num), 0, 1, obj_dev->dev_name) < 0) {
		return -1;
	}
	if (cl == NULL && (cl = class_create(THIS_MODULE, "chardrv")) == NULL) {
		unregister_chrdev_region(obj_dev->dev_num, 1);
		return -1;
	}
	if (device_create(cl, NULL, obj_dev->dev_num, NULL, obj_dev->dev_name) == NULL) {
		class_destroy(cl);
		unregister_chrdev_region(obj_dev->dev_num, 1);
		return -1;
	}
	cdev_init(&(obj_dev->c_dev), &fops);
	if (cdev_add(&(obj_dev->c_dev), obj_dev->dev_num, 1) == -1) {
		device_destroy(cl, obj_dev->dev_num);
		class_destroy(cl);
		unregister_chrdev_region(obj_dev->dev_num, 1);
		return -1;
	}

	printk(KERN_INFO "DMA_LENGTH = %u \n", DMA_LENGTH);
	/* allocate mmap area */
	obj_dev->ds_axidma_addr =
	    dma_zalloc_coherent(NULL, DMA_LENGTH, &(obj_dev->ds_axidma_handle), GFP_KERNEL);
	list_add( &obj_dev->dev_list, &full_dev_list );
	return 0;
}

static int ds_axidma_pdrv_remove(struct platform_device *pdev)
{
	/* device destructor */
	struct list_head *pos, *q;
	list_for_each_safe( pos, q, &full_dev_list ) {
		struct ds_axidma_device *obj_dev;
    	obj_dev = list_entry( pos, struct ds_axidma_device, dev_list );
    	if (!my_strcmp(obj_dev->dev_name, pdev->name + 9))
    	{
    		list_del( pos );
    		cdev_del(&(obj_dev->c_dev));
    		device_destroy(cl, obj_dev->dev_num);
    		unregister_chrdev_region(obj_dev->dev_num, 1);
    		/* free mmap area */
			if (obj_dev->ds_axidma_addr) {
				dma_free_coherent(NULL, DMA_LENGTH, obj_dev->ds_axidma_addr, obj_dev->ds_axidma_handle);
			}
    		kfree(obj_dev);
    		break;
    	}
  	}
  	if (list_empty(&full_dev_list))
  	{
  		class_destroy(cl);
  	}
	printk(KERN_INFO "<%s> exit: unregistered\n", MODULE_NAME);
	return 0;
}

static int ds_axidma_pdrv_runtime_nop(struct device *dev)
{
	/* Runtime PM callback shared between ->runtime_suspend()
	 * and ->runtime_resume(). Simply returns success.
	 *
	 * In this driver pm_runtime_get_sync() and pm_runtime_put_sync()
	 * are used at open() and release() time. This allows the
	 * Runtime PM code to turn off power to the device while the
	 * device is unused, ie before open() and after release().
	 *
	 * This Runtime PM callback does not need to save or restore
	 * any registers since user space is responsbile for hardware
	 * register reinitialization after open().
	 */
	return 0;
}

static const struct dev_pm_ops ds_axidma_pdrv_dev_pm_ops = {
	.runtime_suspend = ds_axidma_pdrv_runtime_nop,
	.runtime_resume = ds_axidma_pdrv_runtime_nop,
};

static struct of_device_id ds_axidma_of_match[] = {
	{ .compatible = "ds_axidma", },
	{ /* This is filled with module_parm */ },
	{ /* Sentinel */ },
};
MODULE_DEVICE_TABLE(of, ds_axidma_of_match);
module_param_string(of_id, ds_axidma_of_match[1].compatible, 128, 0);
MODULE_PARM_DESC(of_id, "Openfirmware id of the device to be handled by uio");

static struct platform_driver ds_axidma_pdrv = {
	.probe = ds_axidma_pdrv_probe,
	.remove = ds_axidma_pdrv_remove,
	.driver = {
		.name = DRIVER_NAME,
		.owner = THIS_MODULE,
		.pm = &ds_axidma_pdrv_dev_pm_ops,
		.of_match_table = of_match_ptr(ds_axidma_of_match),
	},
};

module_platform_driver(ds_axidma_pdrv);

MODULE_AUTHOR("Fabrizio Spada, Gianluca Durelli");
MODULE_DESCRIPTION("AXI DMA driver");
MODULE_LICENSE("GPL v2");

3.编译,生成BOOT.BIN文件


images/linux/目录下将生成的BOOT.BIN和image.ub文件拷贝到SD卡,插上SD卡。启动串口敲入用户名和密码(均root):


这里可以看到ds_axidma.ko这个内核module。同时可以看到apps


测试方法如下:


至此,DMA的简单实例就完成了,PS侧的DMA可以参考Audio侧,另外,如果有一些文件挂载分区,则如下:

评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shichaog

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值