在上一篇博客大模型之二十七-语音识别Whisper实例浅析中遗留了几个问题,这里来看一下前两个问题。
1.如果不是Huggingface上可以下载的数据该怎么办?
2.上面的代码是可以训练了,但是训练的时候loss真的会和我们预期一致吗?比如如下怎么办?
进阶内容
在Whisper语音识别fine-tune的例子中,我们使用的是Huggingface封装好的数据加载以及Transformer工具,这将很多底层细节对开发人员屏蔽了,但是对于技术人员而言,这还远远不够,本篇通过一个要解决两个问题:
1.数据集是私有的,并不是Huggingface开源的数据集
2.不使用Huggingface封装好的Training pipeline,在Whisper开源的源代码基础之上fine-tune模型,并验证准确性。
整个框架代码使用pytorch-lightning来实现,目前很多优秀的比较大的开源都是实用pytorch-lightning来实现的。
安装一些python库
首先下载Whisper源代码,并且