1.前言
前面介绍的最小二乘学习法,是众多机器学习算法中极为重要的一种基础算法。但是,单纯的最小二乘法对于包含噪声的学习过程经常有过拟合的弱点。如下图所示:
这往往是由于学习模型对于训练样本而言过于复杂。因此,本篇博客将介绍能够控制模型复杂程度的、带有约束条件的最小二乘学习法。
2.部分空间约束的最小二乘学习法
在有参数线性模型:
的一般最小二乘学习法中,因为参数{Θj}j=1->b可以自由设置,使用的是如下图所示的全体参数空间:
本篇博客中将要介绍的部分空间约束的最小二乘法,则是通过把参数空间限制在一定范围内,来防止过拟合现象。
在这里,P是满足P^2=P和P’=P的b*b维矩阵,表示的是矩阵P的值域R(P)的正交投影矩阵。如下图所示: