import tensorflow as tf
from tensorflow.keras import layers, optimizers, datasets
from tensorflow import keras
import matplotlib.pyplot as plt
(x, y), (x_val, y_val) = datasets.mnist.load_data()
x = 2 * tf.convert_to_tensor(x, dtype=tf.float32) / 255. - 1
y = tf.convert_to_tensor(y, dtype=tf.int32)
y = tf.one_hot(y, depth=10)
print(x.shape, y.shape)
train_dataset = tf.data.Dataset.from_tensor_slices((x, y))
train_dataset = train_dataset.batch(200)
model = keras.Sequential([
layers.Dense(512, activation='relu'),
layers.Dense(256, activation='relu'),
layers.Dense(10)])
optimizer = optimizers.SGD(learning_rate=0.001)
def train():
for epoch in range(30):
train_epoch(epoch)
def train_epoch(epoch):
for step, (x, y) in enumerate(train_dataset):
with tf.GradientTape() as tape:
x = tf.reshape(x, (-1, 28 * 28))
out = model(x)
loss = tf.square(out - y)
loss = tf.reduce_sum(loss) / x.shape[0]
grads = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
if step % 100 == 0:
print(epoch, step, 'loss:', loss.numpy())
return mse
if __name__ == '__main__':
train()