机器学习的应用(一)使用场景之判别式模型和生成式模型

本文深入解析机器学习中的两大核心模型——判别式模型与生成式模型。通过对比两者的建模方式,阐述了它们在实际应用中的不同场景,如线性回归、支持向量机、朴素贝叶斯等算法的区别与联系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、机器学习之判别式模型和生成式模型
判别式模型(Discriminative Model)是直接对条件概率p(y|x;θ)建模。常见的判别式模型有线性回归模型、线性判别分析、支持向量机SVM、神经网络、boosting、条件随机场等。

举例:要确定一个羊是山羊还是绵羊,用判别模型的方法是从历史数据中学习到模型,然后通过提取这只羊的特征来预测出这只羊是山羊的概率,是绵羊的概率。

生成式模型(Generative Model)则会对x和y的联合分布p(x,y)建模,然后通过贝叶斯公式来求得p(yi|x),然后选取使得p(yi|x)最大的yi,即:
在这里插入图片描述
常见的生成式模型有 隐马尔可夫模型HMM、朴素贝叶斯模型、高斯混合模型GMM、LDA、高斯、混合多项式、专家的混合物、马尔可夫的随机场

举例:利用生成模型是根据山羊的特征首先学习出一个山羊的模型,然后根据绵羊的特征学习出一个绵羊的模型,然后从这只羊中提取特征,放到山羊模型中看概率是多少,在放到绵羊模型中看概率是多少,哪个大就是哪个。

判别式模型生成式模型机器学习中两种常见的模型类型。生成式模型是通过学习数据的分布来建立模型P(y|x),然后利用该模型来生成新的数据。典型的生成式模型有朴素贝叶斯模型,它通过学习数据的分布来建立概率模型,然后利用该模型来生成新的数据。判别式模型是通过学习输入输出之间的映射关系来建立模型y=f(x),然后利用该模型来预测新的输出。典型的判别式模型有支持向量机模型,它通过学习输入输出之间的映射关系来建立分类模型,然后利用该模型来预测新的分类结果。生成式模型判别式模型都有各自的优缺点,选择哪种模型取决于具体的应用场景数据特征。常见的生成式模型包括决策树、朴素贝叶斯、隐马尔可夫模型、条件随机场、概率潜在语义分析、潜在狄利克雷分配、高斯混合模型。常见的判别式模型包括感知机、支持向量机、K临近、Adaboost、K均值、潜在语义分析、神经网络。逻辑回归既可以看做是生成式模型,也可以看做是判别式模型。\[1\]\[2\] #### 引用[.reference_title] - *1* *2* [生成式模型判别式模型](https://blog.youkuaiyun.com/weixin_46359306/article/details/130422585)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [判别式模型生成式模型](https://blog.youkuaiyun.com/Ai_ViVi/article/details/41204309)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值