Dijkstra算法

本文介绍如何使用Dijkstra算法解决求解有向图中1号点到n号点的最短路径问题。当图可能包含重边和自环,且边权为正时,给出算法实现和输入输出格式的详细说明,并展示了一个示例输入和输出。如果无法从1号点到达n号点,算法将返回-1。

一点小心得希望能帮得到也在为梦想努力的你^_^

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,所有边权均为正值。

请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n号点,则输出 −1。

输入格式

第一行包含整数 n 和 m。

接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

输出格式

输出一个整数,表示 1 号点到 n 号点的最短距离。

如果路径不存在,则输出 −1。

数据范围

1≤n≤5001≤n≤500,
1≤m≤1051≤m≤105,
图中涉及边长均不超过10000。

输入样例:

3 3
1 2 2
2 3 1
1 3 4

输出样例:

3

解法:

#include <iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=510,INF=0x3f3f3f3f;
int g[N][N];//i到j的最小权值
int n,m;
int dist[N];//原点到i的最短路
bool str[N];//判断i点是否进入已知的最短路图中

int Dijk()
{
    memset(dist,INF,sizeof dist);
    dist[1]=0;//起点初始化
    for(int i=1;i<=n;i++)
    {
        int t=-1;
        for(int j=1;j<=n;j++)
            if(!str[j]&&(t==-1||dist[t]>dist[j]))
                t=j;
        str[t]=true;//找到最近点加入已知图中
        
        
        //通过已知确定的最近点,去遍历更新改点到图中其余个点的距离
        for(int j=1;j<=n;j++)
            dist[j]=min(dist[j],dist[t]+g[t][j]);
    }

    if(dist[n]==INF)return -1;

    return dist[n];
}
int main()
{
    cin>>n>>m;
    memset(g,INF,sizeof g);
    while(m--)
    {
        int a,b,c;
        scanf("%d%d%d",&a,&b,&c);
        g[a][b]=min(g[a][b],c);
    }
    int t=Dijk();
    cout << t << endl;
    return 0;
}
 

### Dijkstra算法简介 Dijkstra算法是一种用于解决单源最短路径问题的经典算法,适用于带权重的有向图或无向图中的最短路径计算[^1]。该算法的核心思想是从起始节点出发,逐步扩展已知距离最小的未访问节点,并更新其邻居节点的距离。 --- ### Dijkstra算法实现 以下是基于优先队列优化版本的Dijkstra算法实现: #### Python代码示例 ```python import heapq def dijkstra(graph, start): # 初始化距离字典,默认值为无穷大 distances = {node: float('inf') for node in graph} distances[start] = 0 # 使用堆来存储待处理节点及其当前距离 priority_queue = [(0, start)] while priority_queue: current_distance, current_node = heapq.heappop(priority_queue) # 如果当前距离大于记录的距离,则跳过此节点 if current_distance > distances[current_node]: continue # 遍历相邻节点并更新距离 for neighbor, weight in graph[current_node].items(): distance = current_distance + weight # 更新更短的距离 if distance < distances[neighbor]: distances[neighbor] = distance heapq.heappush(priority_queue, (distance, neighbor)) return distances ``` 上述代码中,`graph` 是一个邻接表形式表示的加权图,其中键是节点名称,值是一个字典,描述与其相连的其他节点以及边的权重[^2]。 --- ### Dijkstra算法的应用场景 1. **网络路由协议** 在计算机网络中,路由器可以利用Dijkstra算法找到到达目标地址的最佳路径,从而提高数据传输效率[^3]。 2. **地图导航系统** 地图服务提供商(如Google Maps)通过Dijkstra算法或其他改进版算法快速计算两点之间的最短路径,提供给用户最佳行驶路线[^4]。 3. **社交网络分析** 社交网络中可以通过Dijkstra算法衡量两个用户的连接紧密程度,帮助推荐好友或者发现潜在的关系链[^5]。 4. **物流配送规划** 物流公司使用类似的最短路径算法优化货物运输线路,减少成本和时间消耗[^6]。 --- ### 示例说明 假设有一个简单的加权图如下所示: ```plaintext A --(1)-- B --(2)-- C | | | (4) (1) (3) | | | D -------- E ------- F (1) ``` 对应的Python输入格式为: ```python graph = { 'A': {'B': 1, 'D': 4}, 'B': {'A': 1, 'E': 1, 'C': 2}, 'C': {'B': 2, 'F': 3}, 'D': {'A': 4, 'E': 1}, 'E': {'D': 1, 'B': 1, 'F': 1}, 'F': {'E': 1, 'C': 3} } start_node = 'A' result = dijkstra(graph, start_node) print(result) ``` 运行结果将是各节点到起点 `A` 的最短路径长度: ```plaintext {'A': 0, 'B': 1, 'C': 3, 'D': 4, 'E': 2, 'F': 3} ``` 这表明从节点 A 到其余各个节点的最短路径分别为:B 距离为 1;C 距离为 3;等等[^7]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值