python之map与reshape的配合使用

本文演示了如何在Python中将字符串列表转换为整数和浮点数列表,进一步利用NumPy库创建数组并进行二维和三维的数组重塑,展示了数据处理的基本流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、

a = ['1', '2', '3', '4']
print(a)

2、

b = list(map(int, a))
print(b)

3、

b = list(map(float, a))
print(b)

4、

b = np.array(b)
print(b)

b = np.reshape(b, (2, 2))
print(b)

c = np.reshape(b, (2, 2, 1))
print(c)

### 使用Python进行路径规划的方法库 #### 方法一:遗传算法 (Genetic Algorithm, GA) 遗传算法是一种基于自然选择和基因遗传机制的随机搜索算法,适合用于复杂环境下的路径规划问题。通过编码、适应度函数设计以及交叉变异操作,可以有效寻找无人机从起点到终点的最佳路径[^1]。 以下是简单的遗传算法实现示例: ```python import numpy as np def genetic_algorithm(population_size, chromosome_length, generations): population = np.random.randint(0, 2, size=(population_size, chromosome_length)) for generation in range(generations): fitness_scores = calculate_fitness(population) # 计算适应度分数 parents = select_parents(population, fitness_scores) # 选择父代个体 offspring = crossover(parents) # 进行交叉操作 mutated_offspring = mutate(offspring) # 执行突变操作 # 替换旧种群 population = mutated_offspring best_solution = find_best_individual(population, fitness_scores) return best_solution def calculate_fitness(individuals): ... def select_parents(population, scores): ... def crossover(parents): ... def mutate(chromosomes): ... # 调用GA函数 best_path = genetic_algorithm(50, 10, 100) print(f"Best Path Found: {best_path}") ``` --- #### 方法二:灰狼优化算法 (Grey Wolf Optimizer, GWO) GWO 是一种基于群体智能的元启发式算法,模拟灰狼捕食行为完成寻优过程。该算法特别适用于连续空间内的路径规划问题[^2]。 下面是 GWO 的简单实现代码: ```python import numpy as np def grey_wolf_optimizer(n_population, dimensions, iterations, search_space): wolves = np.random.uniform(search_space[0], search_space[1], (n_population, dimensions)) alpha, beta, delta = None, None, None # 初始化领导者位置 for t in range(iterations): a = 2 * (1 - t / iterations) # 控制参数a随迭代减小 for i, wolf in enumerate(wolves): D_alpha = abs(alpha - wolf) X1 = alpha - a * (np.random.rand(dimensions) * D_alpha) D_beta = abs(beta - wolf) X2 = beta - a * (np.random.rand(dimensions) * D_beta) D_delta = abs(delta - wolf) X3 = delta - a * (np.random.rand(dimensions) * D_delta) new_position = (X1 + X2 + X3) / 3 wolves[i] = apply_bounds(new_position, search_space) # 边界约束处理 update_leaders(wolves) # 更新Alpha、Beta、Delta的位置 return alpha # 返回最佳解 def apply_bounds(position, bounds): ... def update_leaders(population): ... optimal_path = grey_wolf_optimizer(30, 2, 100, [-10, 10]) print(f"Optimal Path Coordinates: {optimal_path}") ``` --- #### 方法三:模型预测控制 (Model Predictive Control, MPC) MPC 是一种先进的控制方法,能够在线计算未来一段时间内的最优轨迹并逐步执行。对于实时路径规划场景尤为适用[^3]。 下面是一个简化版的 MPC 实现框架: ```python from scipy.optimize import minimize import numpy as np class ModelPredictiveControl: def __init__(self, horizon, dt): self.horizon = horizon self.dt = dt def cost_function(self, u_sequence): total_cost = 0 state = initial_state.copy() for control_input in u_sequence.reshape(-1, 2): next_state = dynamics(state, control_input, self.dt) error = goal_state - next_state[:2] total_cost += error.T @ Q_matrix @ error + control_input.T @ R_matrix @ control_input state = next_state return total_cost def solve_mpc(self, current_state): result = minimize( fun=self.cost_function, x0=np.zeros((self.horizon * 2)), method="SLSQP", constraints=constraints, options={"maxiter": 100} ) optimal_controls = result.x[:2] return optimal_controls mpc_controller = ModelPredictiveControl(horizon=10, dt=0.1) controls = mpc_controller.solve_mpc(initial_state=[0, 0, 0]) print(f"Next Controls: {controls}") ``` --- #### 方法四:动态规划 (Dynamic Programming, DP) 动态规划是一种经典的多阶段决策优化方法,尤其擅长解决离散状态空间中的路径规划问题[^4]。 以下为一个二维网格地图上的动态规划路径搜索实例: ```python import numpy as np def dynamic_programming(grid_map, start, goal): rows, cols = grid_map.shape value_table = np.full_like(grid_map, fill_value=float('inf'), dtype=float) policy_table = np.empty_like(grid_map, dtype=object) value_table[start] = 0 open_list = [(start, 0)] while open_list: pos, val = min(open_list, key=lambda item: item[1]) # 获取最小代价节点 open_list.remove((pos, val)) if pos == goal: break neighbors = get_neighbors(pos, rows, cols) for neighbor in neighbors: if not is_obstacle(grid_map, neighbor): tentative_val = val + movement_cost[pos][neighbor] if tentative_val < value_table[neighbor]: value_table[neighbor] = tentative_val policy_table[neighbor] = pos open_list.append((neighbor, tentative_val)) path = reconstruct_path(policy_table, start, goal) return path grid_map = np.array([[0, 1, 0], [0, 0, 0], [0, 1, 0]]) path = dynamic_programming(grid_map, (0, 0), (2, 2)) print(f"Path from Start to Goal: {path}") ``` --- #### 常见路径规划库推荐 - **NumPy**: 提供高效的数组运算支持。 - **SciPy**: 包含多种数值优化工具,可用于实现高级路径规划算法。 - **Matplotlib/Plotly**: 方便绘制路径及其周围环境。 - **NetworkX**: 支持图论分析,可快速构建拓扑关系网络。 - **ROS-Py**: 面向机器人操作系统开发者的 Python 工具包,内置大量导航功能模块。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值