#数据获取
import pandas as pd
data=pd.read_excl('发电厂数据.xlsx')
x=data.iloc[:,0:4].values
y=data.iloc[:,4].values
#导入线性回归模块
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x,y)
Slr=lr.score(x,y)
c_x=lr.coef_
c_b=lr.intercept_
#预测
import numpy as np
x1=np.array([28.4,50.6,1011.9,80.54])
x1=x1.reshape(1,4)
R1=lr.predict(x1)
r1=x1*c_x
R2=r1.sum()+c_b
print('x回归系数为:',c_x)
print('回归系数常数项为:',c_b)
print('判定系数为:',Slr)
print('样本预测值为:',R1)
#with open('data.csv','wb')as fp:
# fp.write(c_x)