主页介绍
https://www.csie.ntu.edu.tw/~cjlin/libmf/
github介绍
https://github.com/cjlin1/libmf
LIBMF is a library for large-scale sparse matrix factorization
providing solvers for real-valued matrix factorization, binary matrix factorization, and one-class matrix factorization
使用
下载zip file文件,也可以下载别的文件,解压后放到linux文件目录下
进入目录,输入“make”进行编译
real_matrix.tr.txt' 和 `real_matrix.te.txt'是训练和测试数据集
`binary_matrix.tr.txt' 和`binary_matrix.te.txt.'中<value>集是{-1, 1}
在libmf(mf-train所在目录下)目录下使用 ./mf-train以及./mf-predict:查看命令可以用的操作。训练命令。每次迭代
./mf-train demo/real_matrix.tr.txt model
-
./mf-train -l1 0.05 -l2 0.01 demo/real_matrix.tr.txt model ./mf-train -l1 0.015,0 -l2 0.01,0.005 demo/real_matrix.tr.txt model ./mf-train -f 5 -l1 0,0.02 -k 100 -t 30 -r 0.02 -s 4 demo/binary_matrix.tr.txt model ./mf-train -p demo/real_matrix.te.txt demo/real_matrix.tr.txt model #holdout ./mf-train -v 5 demo/real_matrix.tr.txt #five fold cross validation ./mf-train -f 2 --nmf demo/real_matrix.tr.txt #do non-negative matrix factorization with generalized KL-divergenc
./mf-predict
./mf-predict -e 1 demo/real_matrix.te.txt model output
sh demo.sh可以运行demo