在数据应用过程中,数据采集和数据治理是两大核心抓手。本文继《方法论 + 实践,全面解析数据采集方案》之后,作者王灼洲通过两大挑战、三大原则详细阐述了对于企业数据治理的思考。主要内容如下:
· 数据治理的定义和重要性
· 数据治理面临的两大挑战
· 数据治理的三大原则
一、数据治理的定义和重要性
在讨论数据治理之前,我们需要对于数据治理下一个明确的定义,数据治理到底包括了哪些范畴。从我们的视角来讲,数据治理,是指“组织对数据的可用性、完整性和安全性的整体管理”。
数据的可用性,是指数据本身是可用的、可信的和质量有保证的,不会因为本身的数据质量给后续的数据应用带来问题;
数据的完整性,是指我们收集的数据本身是完整的,能够覆盖各类数据应用的需要,不会因为缺少了对某些数据的采集,而带来了数据资产的流失;
数据的安全性,则是指数据治理和分享的过程是安全可控的,这个过程不会侵犯用户隐私,不会给组织本身留下安全隐患。
数据治理的核心,就是帮助我们可以更早、更及时、更高效的发现埋点问题和数据问题,确保后续数据应用的正确性和价值传递。 因此,数据治理的重要性,是毋庸置疑的,它是所有数据应用的基础和根基,它的好坏直接影响数据应用过程中的价值体现。同时,数据治理也是一个组织进行数据资产沉淀的基础,直接