Goldbach`s Conjecture

本文介绍了一个程序设计任务:验证哥德巴赫猜想对于不超过10^7的偶数是否成立。通过预处理所有素数并使用这些素数来检查每个测试案例,程序能够找出表达为两个素数之和的所有可能方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Goldbach's conjecture is one of the oldest unsolved problems in number theory and in all of mathematics. It states:

Every even integer, greater than 2, can be expressed as the sum of two primes [1].

Now your task is to check whether this conjecture holds for integers up to 107.


Input

Input starts with an integer T (≤ 300), denoting the number of test cases.

Each case starts with a line containing an integer n (4 ≤ n ≤ 107, n is even).

Output

For each case, print the case number and the number of ways you can express n as sum of two primes. To be more specific, we want to find the number of(a, b) where

1)      Both a and b are prime

2)      a + b = n

3)      a ≤ b

Sample Input

2

6

4

Sample Output

Case 1: 1

Case 2: 1

Hint

1.      An integer is said to be prime, if it is divisible by exactly two different integers. First few primes are 2, 3, 5, 7, 11, 13, ...

求一个偶数由多少对素数之和构成

#include <bits/stdc++.h>

using namespace std;

bool prime[10000010];
int primes[700005];
int sum;
void Init()
{
    sum = 0;
    memset(prime, 1, sizeof(prime));
    memset(primes, 0, sizeof(primes));
    primes[sum++] = 2;
    prime[0] = prime[1] = 0;
    for(int i = 4; i < 10000010; i += 2)
        prime[i] = 0;
    for(long long i = 3; i < 10000010; i += 2)
    {
        if(prime[i])
        {
            primes[sum++] = i;
            for(long long j = i * i; j < 10000010; j += 2 * i)
                prime[j] = 0;
        }
    }
}
int main()
{
    Init();
    int t;
    long long x, ans;
    scanf("%d", &t);
    for (int cases = 1; cases <= t; ++cases)
    {
        scanf("%lld", &x);
        ans = 0;
        for(int i = 0; primes[i] <= x/2; i++)   //预处理出所有的素数,直接比较素数
            if(prime[x - primes[i]])           
                ans++;
        printf("Case %d: %lld\n", cases, ans);
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值