有一个显然的贪心结论,就是先完成任务截止时间考前的,若在前面的都无法完成,那么后面的更加不可能完成。题目十分良心,aia_iai 已经在输入时升序给出。
对于每个任务,需要用尽可能少地耗时完成尽可能多的百分比,每个计划的状态均为选或不选,这不就是 0−10-10−1 背包嘛。由于要输出方案,所以我们设二维状态,对于某个任务,设 dpi,jdp_{i,j}dpi,j 表示该任务的前 iii 个计划完成的百分率为 jjj 时的最小耗时,这里默认 j>100j > 100j>100 时也表示成 j=100j = 100j=100 的状态。所以可以写成方程 dpi,j(j≤[1,100])=min(dpi−1,j,min{dpi−1,j−p+t})dp_{i,j}(j \le [1,100]) = \min (dp_{i - 1,j},\min \{dp_{i - 1,j - p} + t\})dpi,j(j≤[1,100])=min(dpi−1,j,min{dpi−1,j−p+t}),其中有一个是继承上一次的状态。
对于每个任务的方案记录,直接从 dpi,100dp_{i,100}dpi,100 进行还原,若 dpi,j≠dpi−1,jdp_{i,j} ≠ dp_{i - 1,j}dpi,j=dpi−1,j 则说明发生有效转移,记录此时的计划编号即可。用一个 vector 去记录会比较遍历,每一次 dpdpdp 后将每个人物的方案汇总至总的方案数组即可。
思路不算复杂,不过需要注意 dpdpdp,方案记录数组的初始化以及无解的判断。代码如下:
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <vector>
#define init(x) memset (x,INF,sizeof (x))
#define ll long long
#define ull unsigned long long
#define INF 0x3f3f3f3f
using namespace std;
const int MAX = 1e5 + 5;
const int MOD = 1e9 + 7;
inline int read ();
struct node
{
int id,t,p;
};
int t,n,m,ok,sum,a[MAX],dp[MAX][105];
vector <int> ans,v;
vector <node> e[MAX];
int solve (int x);
int main ()
{
//freopen (".in","r",stdin);
//freopen (".out","w",stdout);
t = read ();
while (t--)
{
n = read ();m = read ();ok = 1;sum = 0;ans.clear ();
for (int i = 1;i <= n;++i) a[i] = read ();
for (int i = 1;i <= m;++i)
{
int x = read (),ti = read (),pi = read ();
e[x].push_back ({i,ti,pi});
}
for (int i = 1;i <= n;++i)
{
int x = solve (i);
if (x == -1 || sum + x > a[i]){ok = 0;break;}//时间不够
sum += x;
for (auto j : v) ans.push_back (j);//答案的汇总
}
if (!ok) puts ("-1");
else
{
printf ("%d\n",ans.size ());
for (auto i : ans) printf ("%d ",i);
puts ("");
}
for (int i = 1;i <= n;++i) e[i].clear ();
}
return 0;
}
inline int read ()
{
int s = 0;int f = 1;
char ch = getchar ();
while ((ch < '0' || ch > '9') && ch != EOF)
{
if (ch == '-') f = -1;
ch = getchar ();
}
while (ch >= '0' && ch <= '9')
{
s = s * 10 + ch - '0';
ch = getchar ();
}
return s * f;
}
int solve (int x)
{
int k = e[x].size ();
for (int i = 0;i <= k;++i)
for (int j = 0;j <= 100;++j) dp[i][j] = INF;
v.clear ();
dp[0][0] = 0;//初始化
for (int i = 1;i <= k;++i)
{
node nw = e[x][i - 1];//注意 vector 的下标存储
for (int j = 100;~j;--j)
dp[i][j] = min (dp[i][j],dp[i - 1][max (0,j - nw.p)] + nw.t),dp[i][j] = min (dp[i - 1][j],dp[i][j]);
}
if (dp[k][100] == INF) return -1;//无法完成任务
int p = k,cnt = 100;
while (p && cnt > 0)
{
if (dp[p][cnt] == dp[p - 1][cnt]) {--p;continue;}//说明并没有发生有效转移
v.push_back (e[x][p - 1].id);//记录编号
cnt -= e[x][p - 1].p;
--p;
}
return dp[k][100];//最小时间
}

被折叠的 条评论
为什么被折叠?



