Description
给定序列 a = ( a 1 , a 2 , ⋯ , a n ) a=(a_1,a_2,\cdots,a_n) a=(a1,a2,⋯,an),有 m m m 个操作分两种:
- add ( l , r , k ) \operatorname{add}(l,r,k) add(l,r,k):对每个 i ∈ [ l , r ] i\in[l,r] i∈[l,r] 执行 a i ← a i + k a_i\gets a_i+k ai←ai+k.
- query ( l , r ) \operatorname{query}(l,r) query(l,r):求 ∑ i = l r sin ( a i ) \sum\limits_{i=l}^r \sin(a_i) i=l∑rsin(ai).
Limitations
1
≤
n
,
m
,
a
i
,
k
≤
1
0
5
1\le n,m,a_i,k \le 10^5
1≤n,m,ai,k≤105
1
≤
l
≤
r
≤
n
1\le l \le r\le n
1≤l≤r≤n
1
s
,
125
MB
1\text{s},125\text{MB}
1s,125MB
Solution
首先考虑转化,使用泰勒展开,然后维护
k
k
k 次方和,但精度显然会炸.
事实上,有公式:
- sin ( x + y ) = sin x cos y + cos x sin y \sin(x+y)=\sin x \cos y + \cos x \sin y sin(x+y)=sinxcosy+cosxsiny.
- cos ( x + y ) = cos x cos y − sin x sin y \cos(x+y)=\cos x \cos y - \sin x \sin y cos(x+y)=cosxcosy−sinxsiny.
于是可用线段树维护区间
sin
\sin
sin 和与
cos
\cos
cos 和.
区间加考虑打
tag
\textit{tag}
tag,pushdown
时用上面公式即可做到
O
(
1
)
O(1)
O(1).
Code
2.64 KB , 4.59 s , 13.45 MB (in total, C++20 with O2) 2.64\text{KB},4.59\text{s},13.45\text{MB}\;\texttt{(in total, C++20 with O2)} 2.64KB,4.59s,13.45MB(in total, C++20 with O2)
#include <bits/stdc++.h>
using namespace std;
using i64 = long long;
using ui64 = unsigned long long;
using i128 = __int128;
using ui128 = unsigned __int128;
using f4 = float;
using f8 = double;
using f16 = long double;
template<class T>
bool chmax(T &a, const T &b){
if(a < b){ a = b; return true; }
return false;
}
template<class T>
bool chmin(T &a, const T &b){
if(a > b){ a = b; return true; }
return false;
}
namespace seg_tree {
struct Node {
int l, r;
i64 tag = 0;
f8 sin = 0., cos = 0.;
};
inline int ls(int u) { return 2 * u + 1; }
inline int rs(int u) { return 2 * u + 2; }
struct SegTree {
vector<Node> tr;
SegTree() {}
SegTree(const vector<int> &a) {
const int n = a.size();
tr.resize(n << 1);
build(0, 0, n - 1, a);
}
void apply(int u, i64 c, f8 sc, f8 cc) {
f8 si = tr[u].sin, ci = tr[u].cos;
tr[u].sin = si * cc + ci * sc;
tr[u].cos = cc * ci - si * sc;
tr[u].tag += c;
}
void pushup(int u, int mid) {
tr[u].sin = tr[ls(mid)].sin + tr[rs(mid)].sin;
tr[u].cos = tr[ls(mid)].cos + tr[rs(mid)].cos;
}
void pushdown(int u, int mid) {
if (!tr[u].tag) return;
i64 x = tr[u].tag;
f8 sx = sin(x), cx = cos(x);
apply(ls(mid), x, sx, cx);
apply(rs(mid), x, sx, cx);
tr[u].tag = 0;
}
void build(int u, int l, int r, const vector<int> &a) {
tr[u].l = l; tr[u].r = r;
if (l == r) {
tr[u].sin = sin(a[l]);
tr[u].cos = cos(a[l]);
return;
}
int mid = (l + r) >> 1;
build(ls(mid), l, mid, a);
build(rs(mid), mid + 1, r, a);
pushup(u, mid);
}
void modify(int u, int l, int r, int c) {
if (l <= tr[u].l && tr[u].r <= r) {
apply(u, c, sin(c), cos(c));
return;
}
int mid = (tr[u].l + tr[u].r) >> 1;
pushdown(u, mid);
if (l <= mid) modify(ls(mid), l, r, c);
if (mid < r) modify(rs(mid), l, r, c);
pushup(u, mid);
}
f8 query(int u, int l, int r) {
if (l <= tr[u].l && tr[u].r <= r) return tr[u].sin;
f8 ans = 0;
int mid = (tr[u].l + tr[u].r) >> 1;
pushdown(u, mid);
if (l <= mid) ans += query(ls(mid), l, r);
if (mid < r) ans += query(rs(mid), l, r);
return ans;
}
void range_add(int l, int r, int v) { modify(0, l, r, v); }
f8 range_sine(int l, int r) { return query(0, l, r); }
};
}
using seg_tree::SegTree;
signed main() {
ios::sync_with_stdio(0);
cin.tie(0), cout.tie(0);
int n; cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) cin >> a[i];
SegTree sgt(a);
int m; cin >> m;
for (int i = 0, op, l, r, c; i < m; i++) {
cin >> op >> l >> r, l--, r--;
if (op == 1) {
cin >> c;
sgt.range_add(l, r, c);
}
else printf("%.1lf\n", sgt.range_sine(l, r));
}
return 0;
}