python数据分析---ch10 数据图形绘制与可视化

1. Ch10–python 数据图形绘制与可视化

Python 中有多个用于数据可视化的库,其中最常用的包括 Matplotlib、Seaborn、Plotly 和 Bokeh 等。以下是这些库中一些常用图形可视化方法的整理表格:

例10-1:为了解某公司雇员的的销售和收入情况,我们搜集整理了某公司10个雇员的销售和收入有关方面的数据,如表10-1所示。试通过绘制直方图来直观该公司职员的有关情况。j

1.1 模块导入

import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

1.2 数据导入

python常见数据的存取
dataframe基本操作
数据文件ch10-1.xls下载

df = pd.read_excel('./data/ch10-1.xls')
print(type(df))
df.head()
<class 'pandas.core.frame.DataFrame'>
EMPID(雇员号) Gender Age Sales BMI(体质指数) Income
0 EM001 M 34 123 Normal 350
1 EM002 F 40 114 Overweight 450
2 EM003 F 37 135 Obesity 169
3 EM004 M 30 139 Overweight 189
4 EM005 F 44 117 Overweight 183

2. 绘制直方图

  • 特点:直方图用于展示数据的分布情况,通过数据分组(通常是连续的数值区间),显示每个组内的频数或频率。
  • 使用场景:当需要了解数据集中数值变量的分布情况时使用。
# %matplotlib inline
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.hist(df['Age'],bins=7)
plt.show()

在这里插入图片描述

2.1 添加图表题

#中文字符设定 plt.rcParams属性总结
plt.rcParams['font.sans-serif']=['SimHei'] # 1
plt.rcParams['axes.unicode_minus']=False # 2

fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.hist(df['Age'],bins=7)
plt.title("年龄分布图") # 3
# plt.title("age distribution")#2-1
plt.show()

在这里插入图片描述

2.2 添加坐标轴标签

#中文字符设定 plt.rcParams属性总结
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False 

fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.hist(df['Age'],bins=7)
plt.title("年龄分布图") 
plt.xlabel('年龄')
plt.ylabel('雇员数量')
plt.show()

在这里插入图片描述

3. 绘制散点图

  • 特点:散点图用于展示两个变量之间的关系,每个点代表一个数据项。
  • 使用场景:当需要分析两个数值变量之间是否存在某种关系时使用。
fig = plt.figure(figsize=(5
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值