医疗数据分析与处理及XAI在网络安全中的应用
随机时间序列变点检测算法性能分析
在随机时间序列的变点检测中,所提出的算法在不同分布下有着不同的表现。对于具有相同位置和不同尺度的逻辑分布,其误差测量结果如下表所示:
| 误差测量指标 | 值 |
| — | — |
| MAE | 152.34 |
| MSE | 49,238.10 |
| MSD | 128.96 |
| RMSE | 194.41 |
| NRMSE | 0.49 |
当多元时间序列服从逻辑分布且至少有一个分量呈阶梯形式时,能得到较为满意的结果(NRMSE = 0.31);否则,结果较为随机(NRMSE = 0.49)。
对于不同分布的情况:
- 均匀和正态分布 :不同位置和相同尺度时,NRMSE分别为0.12和0.09;位置相同但尺度不同时,MRMSE在0.19 - 0.43之间,结果从较为满意到不太满意,但并非随机。
- 指数和伽马分布 :不同位置和尺度参数下,算法的NRMSE在0.5 - 0.8之间,结果是随机的,原因是实验中的时间序列非常相似。
- Gumbel、Rayleigh和Laplace分布 :NRMSE范围从0.14(Gumbel分布)到60%(Rayleigh分布)。Gumbel分布样本的实验结果较为满意;Rayleigh和Laplace分布在相同位置和不同尺度时结果随机;Laplace分布在不同均值和相同尺度时结果满意(NRMSE = 0.24)。
总体而言,
超级会员免费看
订阅专栏 解锁全文
31

被折叠的 条评论
为什么被折叠?



