机器学习与数据科学中的向量、矩阵及相关操作
1. 图像输入与特征向量
在处理图像时,我们会得到输入图像以及对应的输出向量,这些输出向量表示图像中分别包含狗、人类和猫的概率。例如:
| 图像位置 | 输出向量 |
| ---- | ---- |
| 左上角 | [0.9 0.01 0.1] |
| 右上角 | [0.9 0.01 0.9] |
| 左下角 | [0.01 0.99 0.01] |
| 右下角 | [0.88 0.9 0.001] |
同时,对于文档,我们可以排除常见词汇(如 “and”、“if”、“to” 等),统计每个文档中感兴趣词汇的出现次数,并形成特征向量。以下是一个示例:
| docid | 文档 | 特征向量 |
| ---- | ---- | ---- |
| d0 | Roses are lovely. Nobody hates roses. | [0 0] |
| d1 | Gun violence has reached an epidemic proportion in America. | [1 1] |
| d2 | The issue of gun violence is really over - hyped. One can find many instances of violence where no guns were involved. | [2 2] |
| d3 | Guns are for violence prone people. Violence begets guns. Guns beget violence. |
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



