LeetCode 322: Coin Change (硬币找零, DP经典题)

文章介绍了如何使用动态规划和回溯算法解决最少硬币组合问题,给出了一种在给定不同面额硬币数组和总金额的情况下,找到组成该金额所需的最少硬币数量的方法。如果无法组成,返回-1。
  1. Coin Change
    Medium
    17.4K
    391
    Companies
    You are given an integer array coins representing coins of different denominations and an integer amount representing a total amount of money.

Return the fewest number of coins that you need to make up that amount. If that amount of money cannot be made up by any combination of the coins, return -1.

You may assume that you have an infinite number of each kind of coin.

Example 1:

Input: coins = [1,2,5], amount = 11
Output: 3
Explanation: 11 = 5 + 5 + 1
Example 2:

Input: coins = [2], amount = 3
Output: -1
Example 3:

Input: coins = [1], amount = 0
Output: 0

Constraints:

1 <= coins.length <= 12
1 <= coins[i] <= 231 - 1
0 <= amount <= 104

解法1:动态规划。注意此题不可用贪婪法。比如coins = {1, 3, 4}, amount = 6. 用贪婪法得到{4, 1, 1}这种组合,但实际上最优解是{3,3}。

class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        int n = coins.size();
        if (n == 0 || amount == 0) return 0;
        vector<int> dp(amount + 1, INT_MAX);
        for (int i = 1; i <= amount; i++) {
            for (auto j : coins) {
                if (i == j) dp[i] = 1;
                else if (i > j && dp[i - j] != INT_MAX) {
                    dp[i] = min(dp[i], dp[i - j] + 1);
                }
            }
        }
        if (dp[amount] == INT_MAX) return -1;
        return dp[amount];
    }
};

二刷:

class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        int n = coins.size();
        if (n == 0 || amount == 0) return 0;
        vector<int> dp(amount + 1, amount + 1);
        dp[0] = 0;
        for (int i = 1; i <= amount; i++) {
            for (int coin : coins) {
                if (i >= coin)
                    dp[i] = min(dp[i], dp[i - coin] + 1);
            }
        }
        return dp[amount] == amount + 1 ? -1 : dp[amount];
    }
};

解法2:回溯

class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        vector<int> memos(amount + 1, -INT_MAX/3);
        return helper(coins, amount, memos);
    }
private:
    int helper(vector<int>& coins, int amount, vector<int> &memos) {
        if (amount == 0) return 0;
        if (memos[amount] != -INT_MAX/3) return memos[amount];
        int res = INT_MAX;
        for (int coin : coins) {
            if (amount >= coin) {
                int result = helper(coins, amount - coin, memos);
                if (result < 0) continue;
                else res = min(res, result);
            }
        }
        if (res < 0 || res == INT_MAX) memos[amount] = -1;
        else memos[amount] = res + 1;
        return memos[amount];
    }
    vector<int> mems;
};
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值