1、配置适配jdk8的依赖
<dependency> <groupId>io.github.lnyo-cly</groupId> <artifactId>ai4j-spring-boot-stater</artifactId> <version>0.7.0</version> </dependency>
2、配置bootstrap.yml
ai: ollama: api-host: http://localhost:11434
3、编写接口
package com.ronshi.ai;
import io.github.lnyocly.ai4j.listener.SseListener;
import io.github.lnyocly.ai4j.platform.openai.chat.entity.ChatCompletion;
import io.github.lnyocly.ai4j.platform.openai.chat.entity.ChatCompletionResponse;
import io.github.lnyocly.ai4j.platform.openai.chat.entity.ChatMessage;
import io.github.lnyocly.ai4j.service.IChatService;
import io.github.lnyocly.ai4j.service.PlatformType;
import io.github.lnyocly.ai4j.service.factor.AiService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import javax.servlet.http.HttpServletResponse;
import java.io.PrintWriter;
/**
* @author ronshi
* @date 2025/2/17 16:31
*/
@RestController
public class AiController {
@Autowired
private AiService aiService;
@GetMapping("/chat")
public String getChatMessage(@RequestParam String question) throws Exception {
// 获取OLLAMA的聊天服务
IChatService chatService = aiService.getChatService(PlatformType.OLLAMA);
// 创建请求参数
ChatCompletion chatCompletion = ChatCompletion.builder()
.model("deepseek-r1:1.5b")
.message(ChatMessage.withUser(question))
.build();
System.out.println(chatCompletion);
// 发送chat请求
ChatCompletionResponse chatCompletionResponse = chatService.chatCompletion(chatCompletion);
// 获取聊天内容和token消耗
String content = chatCompletionResponse.getChoices().get(0).getMessage().getContent();
long totalTokens = chatCompletionResponse.getUsage().getTotalTokens();
System.out.println("总token消耗: " + totalTokens);
return content;
}
@GetMapping("/chatStream")
public void getChatMessageStream(@RequestParam String question, HttpServletResponse response) throws Exception {
// 中文乱码问题
response.setCharacterEncoding("UTF-8");
// 获取OLLAMA的聊天服务
IChatService chatService = aiService.getChatService(PlatformType.OLLAMA);
// 创建请求参数
ChatCompletion chatCompletion = ChatCompletion.builder()
.model("deepseek-r1:1.5b")
.message(ChatMessage.withUser(question))
.build();
PrintWriter writer = response.getWriter();
// 发送chat请求
SseListener sseListener = new SseListener() {
@Override
protected void send() {
writer.write(this.getCurrStr());
writer.flush();
System.out.println(this.getCurrStr());
}
};
chatService.chatCompletionStream(chatCompletion, sseListener);
writer.close();
System.out.println(sseListener.getOutput());
}
}
4、普通输出
http://localhost:8080/chat?question=地球的组成
5、流式输出
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>人工智能</title>
</head>
<body>
<input id="question" type="text" placeholder="输入需要提问的问题"/>
<button id="startButton">开始</button>
<div id="output"></div>
<script>
const input = document.getElementById("question");
const outputDiv = document.getElementById('output');
const startButton = document.getElementById('startButton');
async function getResponse(){
const question = input.value;
const resp = await fetch("http://localhost:8080/chatStream" + "?question=" + question,{
method: 'GET'
})
const reader = resp.body.getReader();
const textDecoder = new TextDecoder();
while (1){
const { done , value } = await reader.read()
if(done) break;
const str = textDecoder.decode(value);
outputDiv.innerText += str;
console.log(str)
}
}
startButton.addEventListener("click", getResponse)
</script>
</body>
</html>