打卡信奥刷题(1128)用C++实现信奥 P1990 覆盖墙壁

P1990 覆盖墙壁

题目描述

你有一个长为 N N N 宽为 2 2 2 的墙壁,给你两种砖头:一个长 2 2 2 1 1 1,另一个是 L 型覆盖 3 3 3 个单元的砖头。如下图:

0  0
0  00

砖头可以旋转,两种砖头可以无限制提供。你的任务是计算用这两种来覆盖 N × 2 N\times 2 N×2 的墙壁的覆盖方法。例如一个 2 × 3 2\times3 2×3 的墙可以有 5 5 5 种覆盖方法,如下:

012 002 011 001 011  
012 112 022 011 001

注意可以使用两种砖头混合起来覆盖,如 2 × 4 2\times4 2×4 的墙可以这样覆盖:

0112
0012

给定 N N N,要求计算 2 × N 2\times N 2×N 的墙壁的覆盖方法。由于结果很大,所以只要求输出最后 4 4 4 位。例如 2 × 13 2\times 13 2×13 的覆盖方法为 13465 13465 13465,只需输出 3465 3465 3465 即可。如果答案少于 4 4 4 位,就直接输出就可以,不用加前导 0 0 0,如 N = 3 N=3 N=3 时输出 5 5 5

输入格式

一个整数 N N N,表示墙壁的长。

输出格式

输出覆盖方法的最后 4 4 4 位,如果不足 4 4 4 位就输出整个答案。

输入输出样例 #1

输入 #1

13

输出 #1

3465

说明/提示

数据保证, 1 ≤ N ≤ 1000000 1\leq N\leq 1000000 1N1000000

C++实现

#include<iostream>
using namespace std;
const int maxn=1000002;
const int mod=10000;
int f[maxn],g[maxn];
int main()
{
	int n;
	cin>>n;
	f[0]=1;	//g[0]=0
	f[1]=g[1]=1;
	for(int i=2;i<=n;i++)
	{
		f[i]=((f[i-1]+f[i-2])%mod+2*g[i-2]%mod)%mod;
		g[i]=(g[i-1]+f[i-1])%mod;
	}
	cout<<f[n];
	return 0;
}

在这里插入图片描述

后续

接下来我会不断用C++来实现信奥比赛中的算法题、GESP考级编程题实现、白名单赛事考题实现,记录日常的编程生活、比赛心得,感兴趣的请关注,我后续将继续分享相关内容

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值