sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程)
https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share
https://www.youtube.com/watch?v=lAaCeiqE6CE&list=PLXO45tsB95cJ0U2DKySDmhRqQI9IaGxck
人工神经网络 VS 生物神经网络
两者是不一样的
生物神经网络是大自然经过千亿年进化而成,目前最先进人工智能神经网络无法达到
人工神经网络 :通过正反馈和负反馈创建或删除神经元
生物神经网络 :通过刺激产生新的链接,信号通过新的链接传递产生反馈,
目前最先进人工智能神经网络无法模拟生物神经网络
卷积神经网络 CNN (深度学习)应用:
图片识别,语音识别,药物发现
神经网络原理:hidden layer是通过函数传递值
了解神经网络,必须了解线性代数
神经网络对数字识别是一层层分解
https://blog.youkuaiyun.com/gamer_gyt/article/details/51255448
scikit-learn博主使用的是0.17版本,是稳定版,当然现在有0.18发行版,两者还是有区别的,感兴趣的可以自己官网上查看
scikit-learn0.17(and 之前)上对于Neural Network算法 的支持仅限于 BernoulliRBM
scikit-learn0.18上对于Neural Network算法有三个 neural_network.BernoulliRBM ,neural_network.MLPClassifier,neural_network.MLPRgression
Multi-layer Perceptron 多层感知机
MLP是一个监督学习算法,图1是带一个隐藏层的MLP模型
具体可参考:点击阅读
- 1:神经网络算法简介
- 2:Backpropagation算法详细介绍
- 3:非线性转化方程举例
- 4:自己实现神经网络算法NeuralNetwork
- 5:基于NeuralNetwork的XOR实例
- 6:基于NeuralNetwork的手写数字识别实例
- 7:scikit-learn中BernoulliRBM使用实例
- 8:scikit-learn中的手写数字识别实例
一:神经网络算法简介
1:背景
以人脑神经网络为启发,历史上出现过很多版本,但最著名的是backpropagation
2:多层向前神经网络(Multilayer Feed-Forward Neural Network)
多层向前神经网络组成部分
输入层(input layer),隐藏层(hiddenlayer),输出层(output layer)
- 每层由单元(units)组成
- 输入层(input layer)是由训练集的实例特征向量传入
- 经过连接结点的权重(weight)传入下一层,一层的输出是下一层的输入
- 隐藏层的个数是任意的,输出层和输入层只有一个
- 每个单元(unit)也可以被称作神经结点,根据生物学来源定义
- 上图称为2层的神经网络(输入层不算)
- 一层中加权的求和,然后根据非线性的方程转化输出
- 作为多层向前神经网络,理论上,如果有足够多的隐藏层(hidden layers)和足够大的训练集,可以模拟出任何方程
3:设计神经网络结构
3.1使用神经网络训练数据之前,必须确定神经网络层数,以及每层单元个数
3.2特征向量在被传入输入层时通常被先标准化(normalize)和0和1之间(为了加强学习过程)
3.3离散型变量可以被编码成每一个输入单元对应一个特征可能赋的值
比如:特征值A可能取三个值(a0,a1,a2),可以使用三个输入单元来代表A
如果A=a0,那么代表a0的单元值就取1,其他取0
如果A=a1,那么代表a1的单元值就取1,其他取0,以此类推
3.4神经网络即可以用来做分类(classification)问题,也可以解决回归(regression)问题
3.4.1对于分类问题,如果是2类,可以用一个输入单元表示(0和1分别代表2类)
如果多于两类,每一个类别用一个输出单元表示
所以输入层的单元数量通常等于类别的数量
3.4.2没有明确的规则来设计最好有多少个隐藏层
3.4.2.1根据实验测试和误差,以及准确度来实验并改进
4:算法验证——交叉验证法(Cross- Validation)
神经网络优点和缺点
优点:大数据高效,处理复杂模型,处理多维度数据,灵活快速
缺点:数据需要预处理
代替:TensorFlow,Keras
python sklearn建模处理乳腺癌细胞分类器
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
|
python风控评分卡建模和风控常识(博客主亲自录制视频教程)
博主的Python视频教学中心: https://m.study.163.com/user/1135726305.htm?utm_campaign=share&utm_medium=iphoneShare&utm_source=weixin&utm_u=1015941113