自动机器学习助力DenseNet压缩与贝叶斯脉冲决策电路探索
1. 自动DenseNet稀疏化算法
自动DenseNet稀疏化算法(ADS)旨在自动修剪DenseNet中冗余的跳跃连接,以提高网络性能并实现高效压缩。该算法的主要流程如下:
Algorithm 1. Automatic DenseNet Sparsification
Input: A pre-trained DenseNet D, Maximum iteration step N, Batch size b and Compression ratio c
Output: The best-performing sparsified DenseNet under compression ratio
1: Compute the number of the agent’s actions, T, according to the compression ratio c
2: for iteration step=1 to N do
3: Given a set of matrices, M = {M01, M02, ... , M0b}, which represents b uncompressed DenseNets D
4: for t=1 to T do
5: The encoder network encodes the initial state of M as S = {St1, St2, ... , Stb}
6: The policy network takes the state S as input, and
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



