Numpy常用函数总结。
总结参考机器学习算法原理与编程实践
矩阵的初始化
导入包
import numpy as np
创建全0和全1矩阵
myZero = np.zeros([3,5]) myOnes = np.ones([3,5]) print myZero, myOnes
生成随机矩阵
myRand = np.random.rand(3,4) #3行4列0到1之间的随机数矩阵
单位阵
myEye = np.eye(3) #3x3的单位阵
矩阵的元素运算
from numpy import *
元素相加减
myOnes = ones([3,3]) myEye = eye(3) print myOnes + myEye print myOnes - myEye
矩阵数乘
(cA)i,j=c⋅Ai,j
mymatrix = mat( [[1,2,3],[4,5,6],[7,8,9]])
print 10*mymatrix
矩阵所有元素求和
sum(mymatrix)
矩阵各元素的积
mymatrix2 = ones([3,3]) print multiply(mymatrix,mymatrix2)
矩阵各元素的n次幂
power(mymatrix,2)
矩阵的乘法
mymatrix = mat([[1,2,3],[4,5,6],[7,8,9]])
mymatrix2 = mat([[1],[2],[3]])
dot(mymatrix,mymatrix2)
print mymatrix * mymatrix2
矩阵的转置
mymatrix.T
矩阵的行列数、切片、复制、比较
[m,n] = shape(mymatrix)
myscl1 = mymatrix[0]
myscl2 = mymatrix.T[0]
mycpmat = mymatrix.copy()
矩阵的行列式
A = mat( [[1,2,3],[4,5,6],[7,8,9]])
linalg.det(A)
矩阵的逆
linalg.inv(A)
矩阵的秩
linalg.matrix_rank(A)
可逆矩阵求解
linalg.solve(A,T(b))
向量范数
linalg.norm(A)
均值、方差、协方差、相关系数
A = mat([[88,96,104,111],[12,14,16,18]])
mean(A[0])
std(A[0])
cov(A)
corrcoef(A)
特征值、特征向量
A = [[8,1,6],[3,5,7],[4,9,2]]
evals, evecs = linalg.eig(A)