主成分分析与流形学习:高维数据处理之道
在数据科学领域,处理高维数据是一项常见且具有挑战性的任务。主成分分析(PCA)和流形学习是两种重要的技术,它们在高维数据的降维、可视化等方面发挥着关键作用。
主成分分析(PCA)
主成分分析是一种广泛应用于高维数据处理的技术,它在多个方面展现出强大的功能。
PCA在特征选择中的应用
以人脸数据为例,我们发现150个成分就能解释超过90%的方差。这意味着使用这150个成分,我们可以恢复数据的大部分基本特征。以下是具体的代码实现:
# Compute the components and projected faces
pca = RandomizedPCA(150).fit(faces.data)
components = pca.transform(faces.data)
projected = pca.inverse_transform(components)
通过对比原始输入图像和由这150个成分重构的图像,我们可以直观地看到PCA特征选择的有效性。尽管数据的维度降低了近20倍,但投影后的图像仍包含足够的信息,使我们能够识别图像中的个体。这表明我们的分类算法可以在150维的数据上进行训练,而不是3000维的数据,从而显著提高分类效率。
PCA的应用场景总结
PCA在多个领域都有广泛的应用,包括:
- 降维:减少数据集的特征数量,同时保留数据点之间的基本关系。
- 高维数据可视化:帮助我们直观地理解高维数据中各点之间的关系。
超级会员免费看
订阅专栏 解锁全文
7

被折叠的 条评论
为什么被折叠?



