Matrix Decomposition Theorems: Schur and Jordan
1. Schur’s Decomposition Theorem and Related Results
1.1 Necessary and Sufficient Conditions for Diagonal Reduction
- Non - singular Matrix Case : A nonsingular matrix (T) exists such that (T^{-1}AT=\Lambda) (diagonal) if and only if there is a set of (n) linearly independent vectors, each of which is an eigenvector of (A).
- Proof : If (A) has (n) linearly independent eigenvectors (x_1,\cdots,x_n), let (T=(x_1,\cdots,x_n)). Then (AT = A(x_1,\cdots,x_n)=(Ax_1,\cdots,Ax_n)=(\lambda_1x_1,\cdots,\lambda_nx_n)=(x_1,\cdots,x_n)\Lambda = T\Lambda), so (T^{-1}AT=\Lambda). Conversely, if (AT = T\Lambda), then (A(T e_i)=(AT)e_i=(T\Lambda)e_i=T(\Lambda e_i)
超级会员免费看
订阅专栏 解锁全文
1245

被折叠的 条评论
为什么被折叠?



