【bzoj 2442】【codevs 4654】[Usaco2011 Open]修剪草坪(dp+单调队列)

解决Usaco2011Open修剪草坪问题,利用动态规划和单调队列算法,在不超过指定连续数量限制的情况下,求得最大效率值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2442: [Usaco2011 Open]修剪草坪

Time Limit: 10 Sec   Memory Limit: 128 MB
Submit: 851   Solved: 424
[ Submit][ Status][ Discuss]

Description


在一年前赢得了小镇的最佳草坪比赛后,FJ变得很懒,再也没有修剪过草坪。现在,
新一轮的最佳草坪比赛又开始了,FJ希望能够再次夺冠。

然而,FJ的草坪非常脏乱,因此,FJ只能够让他的奶牛来完成这项工作。FJ有N
(1 <= N <= 100,000)只排成一排的奶牛,编号为1...N。每只奶牛的效率是不同的,
奶牛i的效率为E_i(0 <= E_i <= 1,000,000,000)。

靠近的奶牛们很熟悉,因此,如果FJ安排超过K只连续的奶牛,那么,这些奶牛就会罢工
去开派对:)。因此,现在FJ需要你的帮助,计算FJ可以得到的最大效率,并且该方案中
没有连续的超过K只奶牛。

Input


* 第一行:空格隔开的两个整数N和K

* 第二到N+1行:第i+1行有一个整数E_i


Output


* 第一行:一个值,表示FJ可以得到的最大的效率值。

Sample Input

5 2
1
2
3
4
5

输入解释:

FJ有5只奶牛,他们的效率为1,2,3,4,5。他们希望选取效率总和最大的奶牛,但是
他不能选取超过2只连续的奶牛

Sample Output


12

FJ可以选择出了第三只以外的其他奶牛,总的效率为1+2+4+5=12。

HINT

Source

[ Submit][ Status][ Discuss]

【题解】【dp+单调队列】

【f[i]表示前i个奶牛的最小效率,一定包含第i个。 方程f[i]=min(f[i],f[j]+a[i]】

【O(nk)的复杂度会T诶! 用单调队列优化】

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
#define inf 1e18
using namespace std;
ll f[100010],a[100010],ans=inf,sum;
int n,k,q[100010],h,t;
int main()
{
	int i,j;
	scanf("%d%d",&n,&k);
	for(i=1;i<=n;++i)scanf("%lld",&a[i]),sum+=a[i];
	f[0]=0;
	for(i=1;i<=n;++i)
	 {
	 	f[i]=a[i]+f[q[h]];
	 	while(h<t&&f[q[t]]>f[i]) t--;
	 	q[++t]=i;
	 	while(h<t&&q[h]<i-k) h++;
	 }
	for(i=n-k;i<=n;++i) ans=min(ans,f[i]);
	printf("%lld\n",sum-ans);
	return 0;
}


好的,这是一道经典的单调栈问题。题目描述如下: 有 $n$ 个湖,第 $i$ 个湖有一个高度 $h_i$。现在要在这些湖之间挖一些沟渠,使得相邻的湖之间的高度差不超过 $d$。请问最少需要挖多少个沟渠。 这是一道单调栈的典型应用题。我们可以从左到右遍历湖的高度,同时使用一个单调栈来维护之前所有湖的高度。具体来说,我们维护一个单调递增的栈,栈中存储的是湖的下标。假设当前遍历到第 $i$ 个湖,我们需要在之前的湖中找到一个高度最接近 $h_i$ 且高度不超过 $h_i-d$ 的湖,然后从这个湖到第 $i$ 个湖之间挖一条沟渠。具体的实现可以参考下面的代码: ```c++ #include <cstdio> #include <stack> using namespace std; const int N = 100010; int n, d; int h[N]; stack<int> stk; int main() { scanf("%d%d", &n, &d); for (int i = 1; i <= n; i++) scanf("%d", &h[i]); int ans = 0; for (int i = 1; i <= n; i++) { while (!stk.empty() && h[stk.top()] <= h[i] - d) stk.pop(); if (!stk.empty()) ans++; stk.push(i); } printf("%d\n", ans); return 0; } ``` 这里的关键在于,当我们遍历到第 $i$ 个湖时,所有比 $h_i-d$ 小的湖都可以被舍弃,因为它们不可能成为第 $i$ 个湖的前驱。因此,我们可以不断地从栈顶弹出比 $h_i-d$ 小的湖,直到栈顶的湖高度大于 $h_i-d$,然后将 $i$ 入栈。这样,栈中存储的就是当前 $h_i$ 左边所有高度不超过 $h_i-d$ 的湖,栈顶元素就是最靠近 $h_i$ 且高度不超过 $h_i-d$ 的湖。如果栈不为空,说明找到了一个前驱湖,答案加一。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值