记一个板子 原博客在这
#include<bits/stdc++.h>
using namespace std;
const int MAX = 10;
#define __int64 long long
#define Bit(n) 1<<n
#define CLR(arr, val) memset(arr,val,sizeof(arr))
const int mod = 1e9 + 7;
class Matrix {
public:
Matrix(int r, int c) : row(r), col(c) {}
void Init() {
CLR(map, 0);
map[0][0] = map[0][1] = map[1][0] = 1;
}
void Unit() //初始化为单位矩阵
{
CLR(map, 0);
for (int i = 0; i < row; i++)
map[i][i] = 1;
}
int Result() const { return map[0][1] % mod; }
friend Matrix operator*(const Matrix &, const Matrix &);
int Pow(int);
private:
__int64 map[MAX][MAX];
int row, col;
};
Matrix operator*(const Matrix &M1, const Matrix &M2) //矩阵相乘模板
{
Matrix M(M1.row, M2.col); //相乘之后矩阵的行和列会变化
for (int i = 0; i < M1.row; i++)
for (int j = 0; j < M2.col; j++) {
M.map[i][j] = 0;
for (int k = 0; k < M1.col; k++)
M.map[i][j] += M1.map[i][k] * M2.map[k][j];
M.map[i][j] %= mod;
}
return M;
}
Matrix M(2, 2);
int Matrix::Pow(int n) //矩阵快速幂
{
Matrix temp(2, 2);
temp.Init();
for (int i = 0; Bit(i) <= n; i++) //利用二进制的思想求解
{
if (Bit(i) & n) M = M * temp;
temp = temp * temp;
}
return M.Result();
}
int main() {
int k;
scanf("%d", &k);
while(k--){
__int64 num;
cin >> num;
M.Unit();
cout << M.Pow(num) << endl;
}
return 0;
}
再搞一个矩阵的板子
struct Matrix {
ll a[maxn][maxn];
Matrix operator*(const Matrix &b) const {
Matrix c;
for (int i = 1; i <= k; i++) {
for (int j = 1; j <= k; j++) {
c.a[i][j] = 0;
for (int u = 1; u <= k; u++) {
c.a[i][j] = (c.a[i][j] + a[i][u] * b.a[u][j] % (mod - 1)) % (mod - 1);
}
}
}
return c;
}
Matrix pow(ll x) const {
Matrix b = *this, r = *this;
x--;
while (x > 0) {
if (x & 1) r = r * b;
b = b * b;
x >>= 1;
}
return r;
}
};