对于任意给定的实数x,y,zx, y, zx,y,z,
- x≤xx \leq xx≤x.
- 若 x≤yx \leq yx≤y 且 y≤x,y \leq x,y≤x, 则 x=yx=yx=y.
- 若 x≤yx \leq yx≤y 且 y≤z,y \leq z,y≤z, 则 x≤zx \leq zx≤z
- 不是x≤yx \leq yx≤y 就是 y≤xy \leq xy≤x.
- 若 x≤y,x \leq y,x≤y, 则 x+z≤y+zx+z \leq y+zx+z≤y+z.
- 若 x≤yx \leq yx≤y 且 0≤z,0 \leq z,0≤z, 则 x⋅z≤y⋅zx \cdot z \leq y \cdot zx⋅z≤y⋅z.
- x+(y+z)=(x+y)+zx+(y+z)=(x+y)+zx+(y+z)=(x+y)+z.
- x+0=0+x=xx+0=0+x=xx+0=0+x=x.
- 对于xxx总有yyy使得x+y=y+x=0x+y=y+x=0x+y=y+x=0.
- x+y=y+xx+y=y+xx+y=y+x
- x⋅(y⋅z)=(x⋅y)⋅zx \cdot(y \cdot z)=(x \cdot y) \cdot zx⋅(y⋅z)=(x⋅y)⋅z.
- x⋅1=1⋅x=xx \cdot 1=1 \cdot x=xx⋅1=1⋅x=x.
- 若x≠0x \neq 0x=0,总有yyy使得x⋅y=y⋅x=1x \cdot y=y \cdot x=1x⋅y=y⋅x=1.
- x⋅y=y⋅xx \cdot y=y \cdot xx⋅y=y⋅x.
- x⋅(y+z)=(x⋅y)+(x⋅z)x \cdot(y+z)=(x \cdot y)+(x \cdot z)x⋅(y+z)=(x⋅y)+(x⋅z).