微表面模型 | Vol.2 拓展微表面模型以模拟渐变彩虹反射效果

本文深入探讨了如何拓展微表面模型以模拟渐变彩虹反射效果,基于Laurent Belcour等人的研究,介绍了光谱积分和反走样技术在渲染中的应用,展示了不同材质和角度下的视觉效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

专题介绍

在实时渲染和离线渲染领域,对场景模型表面以及空间介质的精细化建模是增加场景真实感的重要手段。计算机图形学领域的许多科研工作者设计出一系列复杂精巧的技术理论,模拟出光线从宏观世界到微观粒子的变化规律。本期专题精选了近年来关于微表面模型、次表面散射模型等相关前沿工作,为读者解读其中的关键技术。

一、背景

“本文是基于LAURENT BELCOUR为主的作者在siggraph 2017发表论文《A Practical Extension to Microfacet Theory for the Modeling of Varying Iridescence》的理解。”

在自然界中,水面上附着的薄油层,漂浮空中的泡泡,在阳光照射下都会呈现斑斓的彩虹色,这篇文章就是要绘制这种神奇的效果。

图1

造成这种现象的原因可以参照 图2,光线在物体和薄层之间发生多次反射和折射,在物体表面反射的瞬间会有相位变化,而若干平行的出射光线之间又存在光程差,所以光线和光线之间会发生干涉现象。而不同频率的光线,其干涉情况也不相同,所以就会产生五彩斑斓的彩虹现象。

图2

二、建模

文章基于微表面模型,并假设物体表面存在厚度为d的另一介质的薄层,如 图3。

图 3

首先回顾下微表面理论。其BRDF主要包括三项,D,F,G。其中D描述表面法向分布,G描述可见表面比例,F是菲涅尔项,描述介质交界处光能反射与折射的比例,同时也描述光波反射时的相变,如 图4-6。

图4 表面法向分布

图5 自遮挡项,描述可见比例

图6 菲涅尔项

基于微表面模型,文章假设物体表面存在很薄的涂层,如 图7。

其中包含一些物体以及涂层的属性。空气的折射率η1,涂层折射率η2,物体表面折射率η3 + iκ3。物体表面折射率是复数,是为了考虑反射存在的相变,根据它菲涅尔方程可以推导出表面的相变和反射率。(见补充材料)。

图 7

光学领域对这种现象的研究已经总结出公式,如 图8。

r=r12+t12r23t21eiΔϕ+t12r23r21r23t21e2iΔϕ+…=r12+∑k=1+∞t12r23[r21r23]k−1t21eikΔϕ=r12+t12r23t21eiΔϕ1−r21r23eiΔϕ

其中的一些变量含义如下:

rab=rabeiϕab</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值