[LeetCode] 119: Triangle

三角形最小路径和算法
本文介绍了一种求解三角形最小路径和的问题,并提供了一种仅使用O(n)额外空间的解决方案。通过动态规划的方法,该算法有效地计算了从三角形顶部到底部的最短路径。
[Problem]

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.


[Analysis]

使用O(n)的空间存储dp

[Solution]

class Solution {
public:
int minimumTotal(vector<vector<int> > &triangle) {
// Note: The Solution object is instantiated only once and is reused by each test case.

// empty triangle
if(triangle.size() == 0)return 0;

// only one row
if(triangle.size() == 1)return triangle[0][0];

// initial
int dp[triangle.size()];
int first = 0, second = 0, tmp = 0;

// dp
dp[0] = triangle[0][0];
for(int i = 1; i < triangle.size(); ++i){
for(int j = 0; j < i; ++j){
first = dp[j] + triangle[i][j];
second = dp[j] + triangle[i][j+1];

// set dp[j]
if(j == 0){
dp[j] = first;
}
else{
dp[j] = min(tmp, first);
}

// set dp[j+1]
if(j == i-1){
dp[j+1] = second;
}
tmp = second;
}
}

// get result
int res = dp[0];
for(int i = 0; i < triangle.size(); ++i){
res = min(res, dp[i]);
}
return res;
}
};
说明:版权所有,转载请注明出处。 Coder007的博客
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值