动态规划算法秘籍

本文源自《趣学算法》,介绍了动态规划的起源、算法思想及解题步骤。动态规划是一种表格处理法,适用于具有最优子结构和可能存在的子问题重叠的问题。解题关键包括分析最优子结构、建立最优值递归式和利用备忘录避免重复计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文来自通俗易懂算法入门书《趣学算法》。

动态规划是1957年理查德·贝尔曼在《Dynamic Programming》一书中提出来的,八卦一下,这个人可能有同学不知道,但他的一个算法你可能听说过,他和莱斯特·福特一起提出了求解最短路径的Bellman-Ford 算法,该算法解决了Dijkstra算法不能处理负权值边的问题。

Dynamic Programming,这里的Programming不是编程的意思,而是指一种表格处理法。我们把每一步得到的子问题结果存储在表格里,每次遇到该子问题时不需要再求解一遍,只需要查询表格即可。

4.1.1 算法思想

动态规划也是一种分治思想,但与分治算法不同的是,分治算法是把原问题分解为若干子问题,自顶向下,求解各子问题,合并子问题的解从而得到原问题的解。动态规划也是把原问题分解为若干子问题,然后自底向上,先求解最小的子问题,把结果存储在表格中,在求解大的子问题时,直接从表格中查询小的子问题的解,避免重复计算,从而提高算法效率。

4.1.2 算法要素

什么问题可以使用动态规划呢?我们首先要分析问题是否具有以下两个性质:

(1) 最优子结构

最优子结构性质是指问题的最优解包含其子问题的最优解。最优子结构是使用动态规划的最基本条件,如果不具有最优子结构性质就不可以使用动态规划解决。

(2)&nb

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

趣学算法

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值