目录
多元离散选择模型简介
常用的离散选择模型有logit模型及probit模型,其区别就是假设不可观测量的分布不同。logit模型假设不可观测项服从Gumbel (Extreme Value Type I) Distribution 。多元logit模型是,多元离散选择模型的一种,适合于效用最大化时的分布选择。
如果决策者i在J项可供选择方案中选择了第j项,那么其效用模型为
样例程序
以下是基于R语言的一个程序
#引入所需要的包
require(foreign)
require(nnet)
require(ggplot2)
require(reshape2)
##读取数据集,这里数据集可以来找csv,mysql等
ml <- read.dta("http://www.ats.ucla.edu/stat/data/hsbdemo.dta")
head(ml) ## 查看数据的前六行
with(ml, table(ses, prog)) ## 以表格的形式统计数目
##函数tapply(进行分组统计)
with(ml, do.call(rbind, tapply(write, prog,function(x) c(M = mean(x), SD = sd(x)))))
## 重新排列因子水平,其中以academic作为基础标准
ml$prog2 <- relevel(ml$prog, ref = "academic")
ml$prog2
##训练模型
test <- multinom(prog2 ~ ses + write, data = ml)
summary(test)
#获取z值
z <- summary(test)$coefficients/summary(test)$standard.errors
z
#获取p值
p <- (1 - pnorm(abs(z), 0, 1))*2
p
## extract the coefficients from the model and exponentiate
exp(coef(test))
head(pp <- fitted(test))
##测试集上检测
dses <- data.frame(ses = c("low", "middle", "high"),write = mean(ml$write))
#获取预测的概率
predict(test, newdata = dses, "probs")
dwrite <- data.frame(ses = rep(c("low", "middle", "high"), each = 41),write = rep(c(30:70), 3))
## store the predicted probabilities for each value of ses and write
pp.write <- cbind(dwrite, predict(test, newdata = dwrite, type = "probs", se = TRUE))
## calculate the mean probabilities within each level of ses
by(pp.write[, 3:5], pp.write$ses, colMeans)
## melt data set to long for ggplot2
lpp <- melt(pp.write, id.vars = c("ses", "write"), value.name = "probability")
head(lpp) # view first few rows
## plot predicted probabilities across write values for
## each level of ses facetted by program type
ggplot(lpp, aes(x = write, y = probability, colour = ses)) +
geom_line() +
facet_grid(variable ~ ., scales="free")
样例程序的问题
但是,在使用上面的样例,如下,当X的维数较大时,类别较多时,就会出现问题,其主要问题是迭代时权重的问题,为此,我们需要修改源码。
test <- multinom(trainset$car_id2 ~ ., data = trainset[,-c(1,13,14)])
以下是容易出现的问题:
Error in nnet.default(X, Y, w, mask = mask, size = 0, skip = TRUE, softmax = TRUE, :
too many (11745) weights
问题解决
针对问题too many (11745) weights,这类问题,解决的办法是修改源码。即新写一个方法。如下,我修改的部分是这里面的
MaxNWts=12000 ##将程序中的MaxNWts变大就行了
##估计参数的函数
nnetfunction<-function (formula, data, weights, subset, na.action, contrasts = NULL,
Hess = FALSE, summ = 0, censored = FALSE, model = FALSE,
...)
{
class.ind <- function(cl) {
n <- length(cl)
x <- matrix(0, n, length(levels(cl)))
x[(1L:n) + n * (as.integer(cl) - 1L)] <- 1
dimnames(x) <- list(names(cl), levels(cl))
x
}
summ2 <- function(X, Y) {
X <- as.matrix(X)
Y <- as.matrix(Y)
n <- nrow(X)
p <- ncol(X)
q <- ncol(Y)
Z <- t(cbind(X, Y))
storage.mode(Z) <- "double"
z <- .C(VR_summ2, as.integer(n), as.integer(p), as.integer(q),
Z = Z, na = integer(1L))
Za <- t(z$Z[, 1L:z$na, drop = FALSE])
list(X = Za[, 1L:p, drop = FALSE], Y = Za[, p + 1L:q])
}
call <- match.call()
m <- match.call(expand.dots = FALSE)
m$summ <- m$Hess <- m$contrasts <- m$censored <- m$model <- m$... <- NULL
m[[1L]] <- quote(stats::model.frame)
m <- eval.parent(m)
Terms <- attr(m, "terms")
X <- model.matrix(Terms, m, contrasts)
cons <- attr(X, "contrasts")
Xr <- qr(X)$rank
Y <- model.response(m)
if (!is.matrix(Y))
Y <- as.factor(Y)
w <- model.weights(m)
if (length(w) == 0L)
if (is.matrix(Y))
w <- rep(1, dim(Y)[1L])
else w <- rep(1, length(Y))
lev <- levels(Y)
if (is.factor(Y)) {
counts <- table(Y)
if (any(counts == 0L)) {
empty <- lev[counts == 0L]
warning(sprintf(ngettext(length(empty), "group %s is empty",
"groups %s are empty"), paste(sQuote(empty),
collapse = " ")), domain = NA)
Y <- factor(Y, levels = lev[counts > 0L])
lev <- lev[counts > 0L]
}
if (length(lev) < 2L)
stop("need two or more classes to fit a multinom model")
if (length(lev) == 2L)
Y <- as.integer(Y) - 1
else Y <- class.ind(Y)
}
if (summ == 1) {
Z <- cbind(X, Y)
z1 <- cumprod(apply(Z, 2L, max) + 1)
Z1 <- apply(Z, 1L, function(x) sum(z1 * x))
oZ <- order(Z1)
Z2 <- !duplicated(Z1[oZ])
oX <- (seq_along(Z1)[oZ])[Z2]
X <- X[oX, , drop = FALSE]
Y <- if (is.matrix(Y))
Y[oX, , drop = FALSE]
else Y[oX]
w <- diff(c(0, cumsum(w))[c(Z2, TRUE)])
print(dim(X))
}
if (summ == 2) {
Z <- summ2(cbind(X, Y), w)
X <- Z$X[, 1L:ncol(X)]
Y <- Z$X[, ncol(X) + 1L:ncol(Y), drop = FALSE]
w <- Z$Y
print(dim(X))
}
if (summ == 3) {
Z <- summ2(X, Y * w)
X <- Z$X
Y <- Z$Y[, 1L:ncol(Y), drop = FALSE]
w <- rep(1, nrow(X))
print(dim(X))
}
offset <- model.offset(m)
r <- ncol(X)
if (is.matrix(Y)) {
p <- ncol(Y)
sY <- Y %*% rep(1, p)
if (any(sY == 0))
stop("some case has no observations")
if (!censored) {
Y <- Y/matrix(sY, nrow(Y), p)
w <- w * sY
}
if (length(offset) > 1L) {
if (ncol(offset) != p)
stop("ncol(offset) is wrong")
mask <- c(rep(FALSE, r + 1L + p), rep(c(FALSE, rep(TRUE,
r), rep(FALSE, p)), p - 1L))
X <- cbind(X, offset)
Wts <- as.vector(rbind(matrix(0, r + 1L, p), diag(p)))
fit <- nnet(X, Y, w, Wts = Wts, mask = mask,
size = 0, skip = TRUE, softmax = TRUE, censored = censored,
rang = 0,MaxNWts=12000, ...)
}
else {
mask <- c(rep(FALSE, r + 1L), rep(c(FALSE, rep(TRUE,
r)), p - 1L))
fit <- nnet(X, Y, w, mask = mask, size = 0,
skip = TRUE, softmax = TRUE, censored = censored,
rang = 0,MaxNWts=12000, ...)
}
}
else {
if (length(offset) <= 1L) {
mask <- c(FALSE, rep(TRUE, r))
fit <- nnet(X, Y, w, mask = mask, size = 0,
skip = TRUE, entropy = TRUE, rang = 0,MaxNWts=12000, ...)
}
else {
mask <- c(FALSE, rep(TRUE, r), FALSE)
Wts <- c(rep(0, r + 1L), 1)
X <- cbind(X, offset)
fit <- nnet(X, Y, w, Wts = Wts, mask = mask,
size = 0, skip = TRUE, entropy = TRUE, rang = 0, MaxNWts=12000,
...)
}
}
fit$formula <- attr(Terms, "formula")
fit$terms <- Terms
fit$call <- call
fit$weights <- w
fit$lev <- lev
fit$deviance <- 2 * fit$value
fit$rank <- Xr
edf <- ifelse(length(lev) == 2L, 1, length(lev) - 1) * Xr
if (is.matrix(Y)) {
edf <- (ncol(Y) - 1) * Xr
if (length(dn <- colnames(Y)) > 0)
fit$lab <- dn
else fit$lab <- 1L:ncol(Y)
}
fit$coefnames <- colnames(X)
fit$vcoefnames <- fit$coefnames[1L:r]
fit$na.action <- attr(m, "na.action")
fit$contrasts <- cons
fit$xlevels <- .getXlevels(Terms, m)
fit$edf <- edf
fit$AIC <- fit$deviance + 2 * edf
if (model)
fit$model <- m
class(fit) <- c("multinom", "nnet")
if (Hess)
fit$Hessian <- multinomHess(fit, X)
fit
}