机器学习实战--决策树

代码:

import numpy as np
import operator
#计算香农熵,度量数据集的无序程度
def calcShannonEnt(dataSet):
    numEntries = len(dataSet)
    labelCountes = {}
    for featureVect in dataSet:
        currentLable = featureVect[-1]
        labelCountes[currentLable] = labelCountes.get(currentLable,0)+1
    shannonEnt = 0.0
    for key in labelCountes:
        prob = float(labelCountes[key]/numEntries)
        shannonEnt -= prob*np.log2(prob)
    return shannonEnt

#根据给定的特征和该特征的相应取值,划分数据集
def splitDataSet(dataSet,axis,value):
    retDataSet = []
    for featVec in dataSet:
        if featVec[axis] == value:
            reducedFeatVec = featVec[:axis]
            reducedFeatVec.extend(featVec[axis+1:])
            retDataSet.append(reducedFeatVec)
    return retDataSet

def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1
    baseEntropy = calcShannonEnt(dataSet)
    bestInfoGain = 0.0
    bestFeature = -1
    for i in range(numFeatures):
        featList = [example[i] for example in dataSet]
        uniqueVals =set(featList)
        newEntropy = 0.0
        for value in uniqueVals:
            subDataSet = splitDataSet(dataSet,i,value)
            prob = len(subDataSet)/float(len(dataSet))
            #在熵函数里面已经加过负号了
            newEntropy += prob*calcShannonEnt(subDataSet)
        infoGain = baseEntropy - newEntropy
        if infoGain > bestInfoGain:
            bestInfoGain = infoGain
            bestFeature = i
    return bestFeature

#如果用完所有特征后,还有叶子节点里面没有统一的分类,则返回最多数对应的分类
def maiorityCnt(classList):
    classCount = {}
    for vote in classList:
        classCount[vote] = classCount.get(vote,0) + 1
    sortedClassCount = sorted(classCount.items(),operator.itemgetter(1),reverse=True)
    return sortedClassCount[0][0]

#创建树函数代码,labels为特征名
def createTree(dataSet,labels):
    classList = [example[-1] for example in dataSet]
    #如果全都是一个分类了,到达了递归终点,返回
    if classList.count(classList[0]) == len(classList):
        return classList[0]
    #遍历完所有特征后返回叶子节点中实例数目最多的类别,到达递归终点返回
    if len(dataSet[0]) == 1:
        return maiorityCnt(classList)
    #chooseBestFeatureToSplit 返回最好的特征对应于数据集的列下标
    bestFeat = chooseBestFeatureToSplit(dataSet)
    bestFeatLable = labels[bestFeat]
    myTree = {bestFeatLable:{}}
    del(labels[bestFeat])
    featValues = [example[bestFeat] for example in dataSet]
    uniquVals =set(featValues)
    for value in uniquVals:
        subLables = labels[:]
        myTree[bestFeatLable][value] = createTree(splitDataSet(dataSet,bestFeat,value),subLables)
    return myTree



def createDataSet():
    dataSet = [[1,1,'yes'],[1,1,'yes'],[1,0,'no'],[0,1,'no'],[0,1,'no']]
    labels = ['水下能生存','有脚蹼']
    return dataSet,labels

if __name__ == '__main__':
    # dataset,labels = createDataSet()
    # shannonEnt = calcShannonEnt(dataset)
    # print(shannonEnt)
    # p = 1/5
    # a = p*np.log2(p)
    # print(-a*5)
    # vocabset = set([])
    # vocabset |= set(['a','b','c'])
    # print(vocabset)
    dataSet,labels = createDataSet()
    print(createTree(dataSet,labels))

 运行结果:

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值